Strong surjectivity of maps from 2-complexes into the 2-sphere
Marcio Fenille ; Oziride Neto
Open Mathematics, Tome 8 (2010), p. 421-429 / Harvested from The Polish Digital Mathematics Library

Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = deg (f) has an integer solution, here deg (f)is the so-called vector-degree of f

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269695
@article{bwmeta1.element.doi-10_2478_s11533-010-0031-6,
     author = {Marcio Fenille and Oziride Neto},
     title = {Strong surjectivity of maps from 2-complexes into the 2-sphere},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {421-429},
     zbl = {1207.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0031-6}
}
Marcio Fenille; Oziride Neto. Strong surjectivity of maps from 2-complexes into the 2-sphere. Open Mathematics, Tome 8 (2010) pp. 421-429. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0031-6/

[1] Aniz C., Strong surjectivity of mappings of some 3-complexes into 3-manifolds, Fund. Math., 2006, 192(3), 195–214 http://dx.doi.org/10.4064/fm192-3-1 | Zbl 1111.55001

[2] Aniz C., Strong surjectivity of mappings of some 3-complexes into MQ8 , Cent. Eur. J. Math., 2008, 6(4), 497–503 http://dx.doi.org/10.2478/s11533-008-0042-8 | Zbl 1153.55002

[3] Brooks R., Nielsen root theory, In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 375–431 http://dx.doi.org/10.1007/1-4020-3222-6_11

[4] Ching W.S., Linear equation over commutative rings, Linear Algebra and Appl., 1977, 18(3), 257–266 http://dx.doi.org/10.1016/0024-3795(77)90055-6

[5] Gonçalves D.L., Coincidence theory for maps from a complex into a manifold, Topology Appl., 1999, 92(1), 63–77 http://dx.doi.org/10.1016/S0166-8641(97)00231-9 | Zbl 0927.55003

[6] Gonçalves D.L., Coincidence theory, In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 3–42 http://dx.doi.org/10.1007/1-4020-3222-6_1 | Zbl 1081.55002

[7] Gonçalves D.L., Wong P., Wecken property for roots, Proc. Amer. Math. Soc., 2005, 133(9), 2779–2782 http://dx.doi.org/10.1090/S0002-9939-05-07820-2 | Zbl 1071.55001

[8] Hu S.T., Homotopy Theory, Academic Press, New York-London, 1959

[9] Munkres J.R., Topology, 2nd ed., Princeton Hall, Upper Saddle River, 2000

[10] Sieradski A.J., Algebraic topology for two-dimensional complexes, In: Two-dimensional Homotopy and Combinatorial Group Theory, London Mathematical Society Lecture Notes Series, 197, Cambridge University Press, Cambridge, 1993, 51–96 http://dx.doi.org/10.1017/CBO9780511629358.004 | Zbl 0811.57002