Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = (f) has an integer solution, here (f)is the so-called vector-degree of f
@article{bwmeta1.element.doi-10_2478_s11533-010-0031-6, author = {Marcio Fenille and Oziride Neto}, title = {Strong surjectivity of maps from 2-complexes into the 2-sphere}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {421-429}, zbl = {1207.55002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0031-6} }
Marcio Fenille; Oziride Neto. Strong surjectivity of maps from 2-complexes into the 2-sphere. Open Mathematics, Tome 8 (2010) pp. 421-429. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0031-6/
[1] Aniz C., Strong surjectivity of mappings of some 3-complexes into 3-manifolds, Fund. Math., 2006, 192(3), 195–214 http://dx.doi.org/10.4064/fm192-3-1 | Zbl 1111.55001
[2] Aniz C., Strong surjectivity of mappings of some 3-complexes into , Cent. Eur. J. Math., 2008, 6(4), 497–503 http://dx.doi.org/10.2478/s11533-008-0042-8 | Zbl 1153.55002
[3] Brooks R., Nielsen root theory, In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 375–431 http://dx.doi.org/10.1007/1-4020-3222-6_11
[4] Ching W.S., Linear equation over commutative rings, Linear Algebra and Appl., 1977, 18(3), 257–266 http://dx.doi.org/10.1016/0024-3795(77)90055-6
[5] Gonçalves D.L., Coincidence theory for maps from a complex into a manifold, Topology Appl., 1999, 92(1), 63–77 http://dx.doi.org/10.1016/S0166-8641(97)00231-9 | Zbl 0927.55003
[6] Gonçalves D.L., Coincidence theory, In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 3–42 http://dx.doi.org/10.1007/1-4020-3222-6_1 | Zbl 1081.55002
[7] Gonçalves D.L., Wong P., Wecken property for roots, Proc. Amer. Math. Soc., 2005, 133(9), 2779–2782 http://dx.doi.org/10.1090/S0002-9939-05-07820-2 | Zbl 1071.55001
[8] Hu S.T., Homotopy Theory, Academic Press, New York-London, 1959
[9] Munkres J.R., Topology, 2nd ed., Princeton Hall, Upper Saddle River, 2000
[10] Sieradski A.J., Algebraic topology for two-dimensional complexes, In: Two-dimensional Homotopy and Combinatorial Group Theory, London Mathematical Society Lecture Notes Series, 197, Cambridge University Press, Cambridge, 1993, 51–96 http://dx.doi.org/10.1017/CBO9780511629358.004 | Zbl 0811.57002