On the k-gamma q-distribution
Rafael Díaz ; Camilo Ortiz ; Eddy Pariguan
Open Mathematics, Tome 8 (2010), p. 448-458 / Harvested from The Polish Digital Mathematics Library

We provide combinatorial as well as probabilistic interpretations for the q-analogue of the Pochhammer k-symbol introduced by Díaz and Teruel. We introduce q-analogues of the Mellin transform in order to study the q-analogue of the k-gamma distribution.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268940
@article{bwmeta1.element.doi-10_2478_s11533-010-0029-0,
     author = {Rafael D\'\i az and Camilo Ortiz and Eddy Pariguan},
     title = {On the k-gamma q-distribution},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {448-458},
     zbl = {1202.05012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0029-0}
}
Rafael Díaz; Camilo Ortiz; Eddy Pariguan. On the k-gamma q-distribution. Open Mathematics, Tome 8 (2010) pp. 448-458. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0029-0/

[1] Andrews G., Askey R., Roy R., Special functions, Cambridge University Press, Cambridge, 1999 | Zbl 0920.33001

[2] Callan D., A combinatorial survey of identities for the double factorial, preprint available at http://arxiv.org/abs/0906.1317

[3] Cheung P., Kac V, Quantum Calculus, Springer-Verlag, Berlin, 2002

[4] De Sole A., Kac V., On integral representations of q-gamma and q-beta functions, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9. Mat. Appl., 2005, 16, 11–29 | Zbl 1225.33017

[5] Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 2007, 15, 179–192 | Zbl 1163.33300

[6] Díaz R., Pariguan E., On the Gaussian q-distribution, J. Math. Anal. Appl., 2009, 358, 1–9 http://dx.doi.org/10.1016/j.jmaa.2009.04.046 | Zbl 1166.60007

[7] Diaz R., Pariguan E., Super, Quantum and Non-Commutative Species, Afr. Diaspora J. Math, 2009, 8, 90–130 | Zbl 1239.16001

[8] Díaz R., Teruel C, q, k-generalized gamma and beta functions, J. Nonlinear Math. Phys., 2005, 12, 118–134 http://dx.doi.org/10.2991/jnmp.2005.12.1.10 | Zbl 1075.33010

[9] George G., Mizan R., Basic Hypergeometric series, Cambridge Univ. Press, Cambridge, 1990 | Zbl 0695.33001

[10] Gessel I., Stanley R, Stirling polynomials, J. Combin. Theory Ser. A, 1978, 24, 24–33 http://dx.doi.org/10.1016/0097-3165(78)90042-0

[11] Kokologiannaki C.G., Properties and Inequalities of Generalized k-Gamma, Beta and Zeta Functions, Int. J. Contemp. Math. Sciences, 2010, 5, 653–660 | Zbl 1202.33003

[12] Kuba M., On Path diagrams and Stirling permutations, preprint available at http://arxiv4.library.cornell.edu/abs/0906.1672

[13] Mansour M., Determining the k-Generalized Gamma Function Γk(x) by Functional Equations, Int. J. Contemp. Math. Sciences, 2009, 4, 1037–1042 | Zbl 1186.33002

[14] Zeilberger D., Enumerative and Algebraic Combinatorics, In: Gowers T. (Ed.), The Princeton Companion to Mathematics, Princeton University Press, Princeton, 2008 | Zbl 1242.00016