Solvability of a coupled system of parabolic and ordinary differential equations
Algirdas Ambrazevičius
Open Mathematics, Tome 8 (2010), p. 537-547 / Harvested from The Polish Digital Mathematics Library

A model of coupled parabolic and ordinary differential equations for a heterogeneous catalytic reaction is considered and the existence and uniqueness theorem of the classic solution is proved.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269441
@article{bwmeta1.element.doi-10_2478_s11533-010-0028-1,
     author = {Algirdas Ambrazevi\v cius},
     title = {Solvability of a coupled system of parabolic and ordinary differential equations},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {537-547},
     zbl = {1201.35107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0028-1}
}
Algirdas Ambrazevičius. Solvability of a coupled system of parabolic and ordinary differential equations. Open Mathematics, Tome 8 (2010) pp. 537-547. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0028-1/

[1] Galdikas A., Pranevičius L., Ion Beam Surface Processing: Composition and Morphology, Technologija, Kaunas, 1998

[2] Galdikas A., Pranevičius L., Interaction of Ions with Condensed Matter, NOVA Science Publishers, Inc, Huntington, New York, USA, 2000

[3] Fadeev D.K., Vulix B.Z., Ural’ceva N.N., Selected chapters of analysis and algebra, LGU, 1981 (in Russian)

[4] Friedman A., Partial differential equations of parabolic type, Prentice-Hall, Englewood Clifs, New York, 1964 | Zbl 0144.34903

[5] Ladyzhenskaja O.A., Solonnikov V.A., Uralc’eva N.N., Linear and quasilinear equation of parabolic type, Translations of Mathematical Monographs, Vol. 23, Am. Math. Soc., Providence, Rhode Island, 1967

[6] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 1918, 40(9), 1361–1403 http://dx.doi.org/10.1021/ja02242a004

[7] Pao C.V., Nonlinear parabolic and elliptic equations, Plenum Press, New York and London, 1992

[8] Skakauskas V., Deterministic models, preprint available at http://www.mif.vu.lt/katedros/dlsm/darbuotojai/vlask/Detmod.pdf (in Lithuanian)