A metric space M is said to have the fibered approximation property in dimension n (briefly, M ∈ FAP(n)) if for any ɛ > 0, m ≥ 0 and any map g: m × n → M there exists a map g′: m × n → M such that g′ is ɛ-homotopic to g and dim g′ (z × n) ≤ n for all z ∈ m. The class of spaces having the FAP(n)-property is investigated in this paper. The main theorems are applied to obtain generalizations of some results due to Uspenskij [11] and Tuncali-Valov [10].
@article{bwmeta1.element.doi-10_2478_s11533-010-0027-2, author = {Taras Banakh and Vesko Valov}, title = {Spaces with fibered approximation property in dimension n}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {411-420}, zbl = {1221.54042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0027-2} }
Taras Banakh; Vesko Valov. Spaces with fibered approximation property in dimension n. Open Mathematics, Tome 8 (2010) pp. 411-420. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0027-2/
[1] Banakh T., Valov V., General position properties in fiberwise geometric topology, preprint available at http://arxiv.org/abs/1001.2494 | Zbl 1301.57019
[2] Banakh T., Valov V., Approximation by light maps and parametric Lelek maps, preprint available at http://arxiv.org/abs/0801.3107 | Zbl 1223.54047
[3] Cauty R., Convexité topologique et prolongement des fonctions continues, Compos. Math., 1973, 27, 233–273 (in French) | Zbl 0275.54015
[4] Matsuhashi E., Valov V., Krasinkiewicz spaces and parametric Krasinkiewicz maps, available at http://arxiv.org/abs/0802.4436 | Zbl 1221.54041
[5] Levin M., Bing maps and finite-dimensional maps, Fund. Math., 1996, 151, 47–52 | Zbl 0860.54028
[6] Pasynkov B., On geometry of continuous maps of countable functional weight, Fundam. Prikl. Matematika, 1998, 4, 155–164 (in Russian) | Zbl 0963.54025
[7] Repovš D., Semenov P., Continuous selections of multivalued mappings, Mathematics and its Applications, 455, Kluwer Academic Publishers, Dordrecht, 1998 | Zbl 0915.54001
[8] Sipachëva O., On a class of free locally convex spaces, Mat. Sb., 2003, 194, 25–52 (in Russian); English translation: Sb. Math., 2003, 194, 333–360 | Zbl 1079.54014
[9] Tuncali M., Valov V., On dimensionally restricted maps, Fund. Math., 2002, 175, 35–52 http://dx.doi.org/10.4064/fm175-1-2 | Zbl 1021.54027
[10] Tuncali M., Valov V., On finite-dimensional maps II, Topology Appl., 2003, 132, 81–87 http://dx.doi.org/10.1016/S0166-8641(02)00365-6 | Zbl 1029.54042
[11] Uspenskij V., A remark on a question of R. Pol concerning light maps, Topology Appl., 2000, 103, 291–293 http://dx.doi.org/10.1016/S0166-8641(99)00030-9