Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras
Osamu Hatori ; Go Hirasawa ; Takeshi Miura
Open Mathematics, Tome 8 (2010), p. 597-601 / Harvested from The Polish Digital Mathematics Library

Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that Ta^y=Te^ya^φyyKTe^ya^φy¯yMK for all a ∈ A, where e is unit element of A. If, in addition, Te^=1 and Tie^=i on M B, then T is an algebra isomorphism.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269004
@article{bwmeta1.element.doi-10_2478_s11533-010-0025-4,
     author = {Osamu Hatori and Go Hirasawa and Takeshi Miura},
     title = {Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {597-601},
     zbl = {1211.46052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0025-4}
}
Osamu Hatori; Go Hirasawa; Takeshi Miura. Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras. Open Mathematics, Tome 8 (2010) pp. 597-601. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0025-4/

[1] Ellis A.J., Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc., 1990, 22, 381–385 http://dx.doi.org/10.1112/blms/22.4.381 | Zbl 0713.46016

[2] Gleason A.M., A characterization of maximal ideals, J. Analyse Math., 1967, 19, 171–172 http://dx.doi.org/10.1007/BF02788714 | Zbl 0148.37502

[3] Hatori O., Miura T., Takagi H., Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving property, Proc. Amer. Math. Soc., 2006, 134, 2923–2930 http://dx.doi.org/10.1090/S0002-9939-06-08500-5 | Zbl 1102.46032

[4] Hatori O., Miura T., Takagi T., Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl., 2007, 326, 281–296 http://dx.doi.org/10.1016/j.jmaa.2006.02.084 | Zbl 1113.46047

[5] Jarosz K., Perturbations of Banach algebras, Lecture Notes in Mathematics 1120, Springer, 1985 | Zbl 0557.46029

[6] Kahane J.P., Zelazko W, A characterization of maximal ideals in commutative Banach algebras, Studia Math., 1968, 29, 339–343 | Zbl 0155.45803

[7] Kowalski S., Słodkowski Z., A characterization of maximal ideals in commutative Banach algebras, Studia Math., 1980, 67, 215–223 | Zbl 0456.46041

[8] Lambert S., Luttman A., Tonev T., Weakly peripherally-multiplicative mappings between uniform algebras, Contemp. Math., 2007, 435, 265–281 | Zbl 1148.46030

[9] Luttman A., Lambert S., Norm conditions for uniform algebra isomorphisms, Cent. Eur. J. Math., 2008, 6, 272–280 http://dx.doi.org/10.2478/s11533-008-0016-x | Zbl 1151.46036

[10] Luttman A., Tonev T., Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc., 2007, 135, 3589–3598 http://dx.doi.org/10.1090/S0002-9939-07-08881-8 | Zbl 1134.46030

[11] Mazur S., Ulam S., Sur les transformationes isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194, 946–948 | Zbl 58.0423.01

[12] Miura T., Honma D., A generalization of peripherally-multiplicative surjections between standard operator algebras, Cent. Eur. J. Math., 2009, 7, 479–486 http://dx.doi.org/10.2478/s11533-009-0033-4 | Zbl 1197.47051

[13] Miura T., Honma D., Shindo R., Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math., to appear | Zbl 1232.46048

[14] Molnár L., Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc., 2002, 130, 111–120 http://dx.doi.org/10.1090/S0002-9939-01-06172-X | Zbl 0983.47024

[15] Rao N.V., Roy A.K., Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc., 2005, 133, 1135–1142 http://dx.doi.org/10.1090/S0002-9939-04-07615-4 | Zbl 1068.46028

[16] Rao N.V., Roy A.K., Multiplicatively spectrum-preserving maps of function algebras. II, Proc. Edinburgh Math. Soc., 2005, 48, 219–229 http://dx.doi.org/10.1017/S0013091504000719 | Zbl 1074.46033

[17] Rao N.V., Tonev T.V., Toneva E.T., Uniform algebra isomorphisms and peripheral spectra, Contemp. Math., 2007, 427, 401–416 | Zbl 1123.46035

[18] Tonev T., The Banach-Stone theorem for Banach algebras, preprint

[19] Tonev T., Luttman A., Algebra isomorphisms between standard operator algebras, Studia Math., 2009, 191, 163–170 http://dx.doi.org/10.4064/sm191-2-4 | Zbl 1179.47035

[20] Tonev T., Yates R., Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 2009, 357, 45–53 http://dx.doi.org/10.1016/j.jmaa.2009.03.039 | Zbl 1171.47032

[21] Väisälä J., A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 2003, 110–7, 633–635 http://dx.doi.org/10.2307/3647749

[22] Zelazko W., A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 1968, 30, 83–85 | Zbl 0162.18504