Anti-invariant Riemannian submersions from almost Hermitian manifolds
Bayram Ṣahin
Open Mathematics, Tome 8 (2010), p. 437-447 / Harvested from The Polish Digital Mathematics Library

We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for the total manifold of such submersions.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269399
@article{bwmeta1.element.doi-10_2478_s11533-010-0023-6,
     author = {Bayram Sahin},
     title = {Anti-invariant Riemannian submersions from almost Hermitian manifolds},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {437-447},
     zbl = {1207.53036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0023-6}
}
Bayram Ṣahin. Anti-invariant Riemannian submersions from almost Hermitian manifolds. Open Mathematics, Tome 8 (2010) pp. 437-447. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0023-6/

[1] Altafini C., Redundant robotic chains on Riemannian submersions IEEE Transactions on Robotics and Automation, 2004, 20(2), 335–340 http://dx.doi.org/10.1109/TRA.2004.824636

[2] Baird P., Wood J.C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press, Oxford, 2003 | Zbl 1055.53049

[3] Chinea D., Almost contact metric submersions, Rend. Circ. Mat. Palermo, 1985, 34(1),89–104 http://dx.doi.org/10.1007/BF02844887 | Zbl 0572.53033

[4] Eells J., Sampson J.H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 1964, 86, 109–160 http://dx.doi.org/10.2307/2373037 | Zbl 0122.40102

[5] Escobales R.H. Jr., Riemannian submersions from complex projective space, J. Differential Geom., 1978, 13(1), 93–107 | Zbl 0406.53036

[6] Falcitelli M., Ianus S., Pastore A.M., Riemannian Submersions and Related Topics, World Scientific, River Edge, NJ, 2004 http://dx.doi.org/10.1142/9789812562333 | Zbl 1067.53016

[7] Gray A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 1967, 16, 715–737 | Zbl 0147.21201

[8] Ianus S., Mazzocco R., Vilcu G.E., Riemannian submersions from quaternionic manifolds, Acta Appl. Math., 2008, 104(1), 83–89 http://dx.doi.org/10.1007/s10440-008-9241-3 | Zbl 1151.53329

[9] Marrero J.C., Rocha J., Locally conformal Khler submersions, Geom. Dedicata, 1994, 52(3), 271–289 http://dx.doi.org/10.1007/BF01278477 | Zbl 0810.53054

[10] O’Neill B., The fundamental equations of a submersion, Mich. Math. J., 1966, 13, 458–469

[11] Ponge R., Reckziegel H., Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 1993, 48(1), 15–25 http://dx.doi.org/10.1007/BF01265674 | Zbl 0792.53026

[12] Watson B., Almost Hermitian submersions, J. Differential Geometry, 1976, 11(1), 147–165 | Zbl 0355.53037

[13] Yano K., Kon M., Structures on Manifolds, World Scientific, Singapore, 1984