Unbounded Hermitian operators and relative reproducing kernel Hilbert space
Palle Jorgensen
Open Mathematics, Tome 8 (2010), p. 569-596 / Harvested from The Polish Digital Mathematics Library

We study unbounded Hermitian operators with dense domain in Hilbert space. As is known, the obstruction for a Hermitian operator to be selfadjoint or to have selfadjoint extensions is measured by a pair of deficiency indices, and associated deficiency spaces; but in practical problems, the direct computation of these indices can be difficult. Instead, in this paper we identify additional structures that throw light on the problem. We will attack the problem of computing deficiency spaces for a single Hermitian operator with dense domain in a Hilbert space which occurs in a duality relation with a second Hermitian operator, often in the same Hilbert space.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269727
@article{bwmeta1.element.doi-10_2478_s11533-010-0021-8,
     author = {Palle Jorgensen},
     title = {Unbounded Hermitian operators and relative reproducing kernel Hilbert space},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {569-596},
     zbl = {1220.47029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0021-8}
}
Palle Jorgensen. Unbounded Hermitian operators and relative reproducing kernel Hilbert space. Open Mathematics, Tome 8 (2010) pp. 569-596. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0021-8/

[1] Alpay D., Levanony D., Rational functions associated with the white noise space and related topics, Potential Anal., 2008, 29,2, 195–220 http://dx.doi.org/10.1007/s11118-008-9094-4 | Zbl 1203.30051

[2] Alpay D., Bruinsma P., Dijksma A., de Snoo H., Interpolation problems, extensions of symmetric operators and reproducing kernel spaces, I, Oper. Theory Adv. Appl., Vol. 50, Birkhäuser, Basel, 1991 | Zbl 0737.47016

[3] Alpay D., Bruinsma P., Dijksma A., de Snoo H., Addendum: “Interpolation problems, extensions of symmetric operators and reproducing kernel spaces, II”, Integral Equations Operator Theory, 1992, 15(3), 378–388 http://dx.doi.org/10.1007/BF01200325 | Zbl 0780.47016

[4] Alpay D., Levanony D., On the reproducing kernel Hilbert spaces associated with the fractional and bi-fractional Brownian motions, Potential Anal., 2008, 28,2, 163–184 http://dx.doi.org/10.1007/s11118-007-9070-4 | Zbl 1136.46022

[5] Alpay D., Shapiro M., Volok D., Reproducing kernel spaces of series of Fueter polynomials, In Operator theory in Krein spaces and nonlinear eigenvalue problems, Oper. Theory Adv. Appl., Vol. 162, Birkhäuser, Basel, 2006 | Zbl 1107.46023

[6] Aronszajn N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 1950, 68, 337–404 http://dx.doi.org/10.2307/1990404 | Zbl 0037.20701

[7] Atkinson K., Han W., Theoretical numerical analysis, Texts in Applied Mathematics, A functional analysis framework, 2nd ed., Vol. 39, Springer, New York, 2005 | Zbl 1068.47091

[8] Baladi V., Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, Vol. 16, World Scientific Publishing Co. Inc., River Edge, NJ, 2000 | Zbl 1012.37015

[9] Barlow M., Bass R., Chen Z-Q, Kassmann M., Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 2009, 361(4), 1963–1999 http://dx.doi.org/10.1090/S0002-9947-08-04544-3

[10] Behrndt J., Hassi S., de Snoo H., Functional models for Nevanlinna families, Opuscula Math., 2008, 28(3), 233–245 | Zbl 1183.47004

[11] Behrndt J., Hassi S., de Snoo H., Boundary relations, unitary colligations, and functional models, Complex Anal. Oper. Theory, 2009, 3(1), 57–98 http://dx.doi.org/10.1007/s11785-008-0064-z | Zbl 1186.47007

[12] Brofferio S., Woess W., Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs, Ann. Inst. H. Poincaré Probab. Statist., 2005, 41(6), 1101–1123 http://dx.doi.org/10.1016/j.anihpb.2004.12.004 | Zbl 1083.60062

[13] Carlson R., Pivovarchik V., Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A, 2008, 41(14), 145202, 16 http://dx.doi.org/10.1088/1751-8113/41/14/145202 | Zbl 1149.34021

[14] Doob J., Discrete potential theory and boundaries, J. Math. Mech., 1959, 8, 433–458 | Zbl 0101.11503

[15] Dunford N., Schwartz J., Linear operators, Part II, John Wiley & Sons Inc., New York, 1988 | Zbl 0635.47002

[16] Hassi S., de Snoo H., Szafraniec F., Componentwise and canonical decompositions of linear relations, Dissertationes Mathematicae, 465, 2009 | Zbl 1225.47004

[17] Hida T., Brownian motion, Volume 11, Applications of Mathematics, Translated from the Japanese by the author and T. P. Speed, Springer-Verlag, New York, 1980 | Zbl 0423.60063

[18] Jorgensen P., Pearse E., Operator theory of electrical resistance networks, preprint available at http://arxiv.org/abs/0806.3881 | Zbl 1223.05175

[19] Klopp F., Pankrashkin K., Localization on quantum graphs with random vertex couplings, J. Stat. Phys., 2008, 131,4, 651–673 http://dx.doi.org/10.1007/s10955-008-9517-z | Zbl 1144.82061

[20] Kolmogoroff A., Grundbegriffe der Wahrscheinlichkeitsrechnung, Reprint of the 1933 original, Springer-Verlag, Berlin, 1977

[21] Lax P., Phillips R., Scattering theory for automorphic functions, Bull. Amer. Math. Soc. (N.S.), 1980, 2(2), 261–295 http://dx.doi.org/10.1090/S0273-0979-1980-14735-7 | Zbl 0442.10018

[22] Nelson E., The free Markoff field, J. Functional Analysis, 1973, 12, 211–227 http://dx.doi.org/10.1016/0022-1236(73)90025-6

[23] Ortner R., Woess W., Non-backtracking random walks and cogrowth of graphs, Canad. J. Math., 2007, 59(4), 828–844 | Zbl 1123.05081

[24] Reed M., Simon B., Methods of modern mathematical physics, II, Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975 | Zbl 0308.47002

[25] Stone M., Linear transformations in Hilbert space, Vol. 15, American Mathematical Society Colloquium Publications, Reprint of the 1932 original, American Mathematical Society, Providence, RI, 1990 | Zbl 0933.47001

[26] von Neumann J., Über adjungierte Funktionaloperatoren, Ann. of Math. (2), 1932, 33(2), 294–310 http://dx.doi.org/10.2307/1968331

[27] Yamasaki K., Nagahama H., Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet theorem, ZAMM Z. Angew. Math. Mech., 2008, 88(6), 515–520 http://dx.doi.org/10.1002/zamm.200700140 | Zbl 1138.74004

[28] Zhang H., Orthogonality from disjoint support in reproducing kernel Hilbert spaces, J. Math. Anal. Appl., 2009, 349(1), 201–210 http://dx.doi.org/10.1016/j.jmaa.2008.08.030 | Zbl 1159.46014