On the total domination subdivision numbers in graphs
Seyed Sheikholeslami
Open Mathematics, Tome 8 (2010), p. 468-473 / Harvested from The Polish Digital Mathematics Library

A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Karami, Khoeilar, Sheikholeslami and Khodkar, (Graphs and Combinatorics, 2009, 25, 727–733) proved that for any connected graph G of order n ≥ 3, sdγ t(G) ≤ 2γ t(G) − 1 and posed the following problem: Characterize the graphs that achieve the aforementioned upper bound. In this paper we first prove that sdγ t(G) ≤ 2α′(G) for every connected graph G of order n ≥ 3 and δ(G) ≥ 2 where α′(G) is the maximum number of edges in a matching in G and then we characterize all connected graphs G with sdγ t(G)=2γt(G)−1.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269209
@article{bwmeta1.element.doi-10_2478_s11533-010-0020-9,
     author = {Seyed Sheikholeslami},
     title = {On the total domination subdivision numbers in graphs},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {468-473},
     zbl = {1200.05160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0020-9}
}
Seyed Sheikholeslami. On the total domination subdivision numbers in graphs. Open Mathematics, Tome 8 (2010) pp. 468-473. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0020-9/

[1] Favaron O., Karami H., Khoeilar R., Sheikholeslami S.M., A new upper bound for total domination subdivision numbers, Graphs Combin., 2009, 25, 41–47 http://dx.doi.org/10.1007/s00373-008-0824-6 | Zbl 1211.05109

[2] Favaron O., Karami H., Khoeilar R., Sheikholeslami S.M., On the total domination subdivision number in some classes of graphs, J. Comb. Optim., Doi: 10.1007/s10878-008-9193-6 | Zbl 1198.05121

[3] Favaron O., Karami H., Khoeilar R., Sheikholeslami S.M., Matchings and total domination subdivision number in graphs with few induced 4-cycles, Discuss. Math. Graph Theory, to appear | Zbl 1217.05178

[4] Favaron O., Karami H., Sheikholeslami S.M., Total domination and total domination subdivision numbers, Australas. J. Combin., 2007, 38,229-235 | Zbl 1133.05068

[5] Favaron O., Karami H., Sheikholeslami S.M., Bounding the total domination subdivision number of a graph in terms of its order, J. Comb. Optim., Doi: 10.1007/s10878-009-9224-y | Zbl 1213.90212

[6] Haynes T.W., Hedetniemi S.T., van der Merwe L.C., Total domination subdivision numbers, J. Combin. Math. Combin. Comput., 2003, 44, 115–128 | Zbl 1020.05048

[7] Haynes T.W., Henning M.A., Hopkins L.S., Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory, 2004, 24, 457–467 | Zbl 1065.05070

[8] Haynes T.W., Henning M.A., Hopkins L.S., Total domination subdivision numbers of trees, Discrete Math., 2004, 286, 195–202 http://dx.doi.org/10.1016/j.disc.2004.06.004 | Zbl 1054.05076

[9] Karami H., Khodkar A., Khoeilar R., Sheikholeslami S.M., Trees whose total domination subdivision number is one, Bull. Inst. Combin. Appl., 2008, 53, 57–67 | Zbl 1168.05050

[10] Karami H., Khodkar A., Khoeilar R., Sheikholeslami S.M., An upper bound for the total domination subdivision number of a graph, Graphs Combin., 2009, 25, 727–733 http://dx.doi.org/10.1007/s00373-010-0877-1 | Zbl 1205.05169

[11] Karami H., Khodkar A., Sheikholeslami S.M., An upper bound for total domination subdivision numbers of graphs, Ars Combin., to appear | Zbl 1265.05462

[12] Velammal S., Studies in Graph Theory: Covering, Independence, Domination and Related Topics, PhD Thesis, Manonmaniam Sundaranar University, Tirunelveli, 1997

[13] West D.B., Introduction to Graph Theory, 2nd ed., Prentice-Hall, Inc, USA, 2000