On an approximation processes in the space of analytical functions
Akif Gadjiev ; Arash Ghorbanalizadeh
Open Mathematics, Tome 8 (2010), p. 389-398 / Harvested from The Polish Digital Mathematics Library

In this paper we obtain various approximation theorems by means of k-positive linear operators defined on the space of all analytic functions on a bounded domain of the complex plane.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269756
@article{bwmeta1.element.doi-10_2478_s11533-010-0011-x,
     author = {Akif Gadjiev and Arash Ghorbanalizadeh},
     title = {On an approximation processes in the space of analytical functions},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {389-398},
     zbl = {1209.41005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0011-x}
}
Akif Gadjiev; Arash Ghorbanalizadeh. On an approximation processes in the space of analytical functions. Open Mathematics, Tome 8 (2010) pp. 389-398. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0011-x/

[1] Ahadov R.A., On the convergence of sequences of linear operators in a space of functions that are analytic in the disc, Izv. Akad. Nauk Azerbaidzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 2, 1981, 1, 67–71 (in Russian)

[2] Altomare F., Campiti M., Korovkin-type approximation theory and its applications, In: de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter and Co, Berlin, 1994 | Zbl 0924.41001

[3] Duman O., Statistical approximation theorems by k-positive linear operators, Arch. Math., (Basel) 86, 2006, 6, 569–576 | Zbl 1100.41012

[4] Evgrafov M.A., The method of near systems in the space of analytic functions and its application to interpolation, Trudy Moskov. Mat. Obsc., 1956, 5, 89–201 (in Russian)

[5] Fast H., Sur la convergence statistique, Colloq. Math., 1951, 2, 241–244 (in French) | Zbl 0044.33605

[6] Gadjiev A.D., Linear k-positive operators in a space of regular functions, and theorems of P. P. Korovkin type, Izv. Akad. Nauk Azerbaidzan. SSR Ser. Fiz.-Tehn. Mat. Nauk, 1974, 5, 49–53 (in Russian)

[7] Gadžiev A.D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem, Dokl. Akad. Nauk SSSR, 218, 1974, 1001–1004 (in Russian)

[8] Gadjiev A.D., Theorems of the type of P.P. Korovkin theorems, Mat. Zametki, 1976, 20, 781–786(in Russian)

[9] Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 2002, 32, 129–138 http://dx.doi.org/10.1216/rmjm/1030539612 | Zbl 1039.41018

[10] Hacisalihoglu H.H., Gadjiev A.D., On convergence of the sequences of linear positive operators, Ankara University Press, Ankara, 1995 (in Turkish)

[11] İspir N., Convergence of sequences of k-positive linear operators in subspaces of the space of analytic functions, Hacet. Bull. Nat. Sci. Eng. Ser. B, 1999, 28, 47–53 | Zbl 0940.41010

[12] İspir N., Atakut Ç., On the convergence of a sequence of positive linear operators on the space of m-multiple complex sequences, Hacet. Bull. Nat. Sci. Eng. Ser. B, 2000, 29, 47–54 | Zbl 1094.41014

[13] Özarslan M.A., I-convergence theorems for a class of k-positive linear operators, Cent. Eur. J. Math., 2009, 7, 357–362 http://dx.doi.org/10.2478/s11533-009-0017-4 | Zbl 1179.41005