Infinite dimensional linear groups with many G - invariant subspaces
Leonid Kurdachenko ; Alexey Sadovnichenko ; Igor Subbotin
Open Mathematics, Tome 8 (2010), p. 261-265 / Harvested from The Polish Digital Mathematics Library

Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269812
@article{bwmeta1.element.doi-10_2478_s11533-010-0010-y,
     author = {Leonid Kurdachenko and Alexey Sadovnichenko and Igor Subbotin},
     title = {Infinite dimensional linear groups with many G - invariant subspaces},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {261-265},
     zbl = {1207.20048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0010-y}
}
Leonid Kurdachenko; Alexey Sadovnichenko; Igor Subbotin. Infinite dimensional linear groups with many G - invariant subspaces. Open Mathematics, Tome 8 (2010) pp. 261-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0010-y/

[1] Baumslag G., Wreath product and p-groups, Proc. Cambridge Philos. Soc, 1959, 55, 224–231 http://dx.doi.org/10.1017/S0305004100033934 | Zbl 0089.01401

[2] Buckley J.T., Lennox J.C., Neumann B.H., Smith H., Wiegold J., Groups with all subgroups normal-by-finite, Journal Austral. Math. Soc. (Ser. A), 1995, 59, 384–398 http://dx.doi.org/10.1017/S1446788700037289 | Zbl 0853.20023

[3] Dashkova O.Yu., Dixon M.R., Kurdachenko L.A., Linear groups with rank restrictions on the subgroups of infinite central dimension, Journal Pure and Applied Algebra, 2007, 208, 785–795 http://dx.doi.org/10.1016/j.jpaa.2006.04.002 | Zbl 1112.20030

[4] Dixon M.R., Evans M.J., Kurdachenko L.A., Linear groups with the minimal condition on subgroups of infinite central dimension, J. Algebra, 2004, 277, 172–186 http://dx.doi.org/10.1016/j.jalgebra.2004.02.029 | Zbl 1055.20042

[5] Dixon M.R., Kurdachenko L.A., Linear groups with infinite central dimension, Groups St Andrews 2005, Vol. 1, London Mathematical Society, Lecture Note Series 339, Cambridge Univ. Press., 2007, 306–312 | Zbl 1125.20040

[6] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Locally nilpotent linear groups with the weak chain conditions on subgroups of infinite central dimension, Publicacions Matemàtiques, 2008, 52(1), 151–169 | Zbl 1149.20030

[7] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Antifinitary linear groups, Forum Math., 2008, 20(1), 27–44 http://dx.doi.org/10.1515/FORUM.2008.002 | Zbl 1145.20025

[8] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Semko N.N., Locally nilpotent linear groups with restrictions on their subgroups of infinite central dimension, Geometriae Dedicata, 2009, 138, 69–81 http://dx.doi.org/10.1007/s10711-008-9299-0 | Zbl 1168.20024

[9] Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya., On some infinite dimensional groups, Cent. Eur. J. Math., 2009, 7(2), 178–185 | Zbl 1193.20062

[10] Kurdachenko L.A., Semko N.N., Subbotin I.Ya., Insight into modules over Dedekind domains, Institute of Mathematics: Kiev-2008 | Zbl 1199.13001

[11] Kurdachenko L.A., Subbotin I.Ya., Linear groups with the maximal condition on subgroups of infinite central dimension, Publicacions Matemàtiques, 2006, 50(1), 103–131 | Zbl 1132.20029

[12] Muñoz-Escolano J.M., Otal J., Semko N.N., Linear groups with the weak chain conditions on subgroups of infinite central dimension, Comm. Algebra, 2008, 36(2), 749–763 http://dx.doi.org/10.1080/00927870701724318 | Zbl 1141.20030

[13] Neumann B.H., Groups with finite classes of conjugate subgroups, Math. Z, 1955, 63, 76–96 http://dx.doi.org/10.1007/BF01187925 | Zbl 0064.25201

[14] Phillips R.E., The structure of groups of finitary transformations, J. Algebra, 1988, 119, 400–448 http://dx.doi.org/10.1016/0021-8693(88)90068-3

[15] Phillips R.E., Finitary linear groups: a survey, In: Finite and locally finite groups, NATO ASI Series, Vol. 471, Kluver, Dordrecht, 1995, 111–146 | Zbl 0840.20048