Multivalued fractals in b-metric spaces
Monica Boriceanu ; Marius Bota ; Adrian Petruşel
Open Mathematics, Tome 8 (2010), p. 367-377 / Harvested from The Polish Digital Mathematics Library

Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal operators. On the other hand, the most common setting for the study of fractals and multi-fractals is the case of operators on complete or compact metric spaces. The purpose of this paper is to extend the study of fractal operator theory for multivalued operators on complete b-metric spaces.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269747
@article{bwmeta1.element.doi-10_2478_s11533-010-0009-4,
     author = {Monica Boriceanu and Marius Bota and Adrian Petru\c sel},
     title = {Multivalued fractals in b-metric spaces},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {367-377},
     zbl = {1235.54011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0009-4}
}
Monica Boriceanu; Marius Bota; Adrian Petruşel. Multivalued fractals in b-metric spaces. Open Mathematics, Tome 8 (2010) pp. 367-377. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0009-4/

[1] Andres J., Fišer J., Metric and topological multivalued fractals, Int. J. Bifurc. Chaos Appl. Sci. Engn., 2004, 14, 1277–1289 http://dx.doi.org/10.1142/S021812740400979X | Zbl 1057.28003

[2] Andres J., Fišer J., Gabor G., Leśniak K., Multivalued fractals, Chaos Solitons & Fractals, 2005, 24, 665–700 http://dx.doi.org/10.1016/j.chaos.2004.09.029 | Zbl 1077.28002

[3] Bakhtin I.A., The contraction mapping principle in almost metric spaces, Funct. Anal, Gos. Ped. Inst. Unianowsk, 1989, 30, 26–37 | Zbl 0748.47048

[4] Barnsley M.F, Fractals Everywhere, Academic Press, Boston, 1988

[5] Berinde V, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3–9

[6] Berinde V, Sequences of operators and fixed points in quasimetric spaces, Studia Univ. Babeş-Bolyai, Math., 1996, 16,23–27 | Zbl 1005.54501

[7] Blumenthal L.M., Theory and Applications of Distance Geometry, Oxford Univ. Press, Oxford, 1953

[8] Boriceanu M., Petruşel A., Rus I.A., Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Internat. J. Math. Statistics, 2010, 6, 65–76

[9] Bourbaki N., Topologie générale, Herman, Paris, 1974

[10] Browder FE., On the convergence of successive approximations for nonlinear functional equations, Indag. Math., 1968,30,27–35 | Zbl 0155.19401

[11] Chifu C, Petruşel A., Multivalued fractals and generalized multivalued contractions, Chaos Solitons & Fractals, 2008,36,203–210 http://dx.doi.org/10.1016/j.chaos.2006.06.027 | Zbl 1131.28005

[12] Covitz H., Nadler S.B. jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 1970, 8, 5–11 http://dx.doi.org/10.1007/BF02771543 | Zbl 0192.59802

[13] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 1998, 46, 263–276 | Zbl 0920.47050

[14] El Naschie M.S., Iterated function systems and the two-slit experiment of quantum mechanics, Chaos Solitons & Fractals, 1994, 4, 1965–1968 http://dx.doi.org/10.1016/0960-0779(94)90011-6

[15] Fréchet M., Les espaces abstraits, Gauthier-Villars, Paris, 1928

[16] Heinonen J., Lectures on Analysis on Metric Spaces, Springer Berlin, 2001

[17] Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis, Vol. I, II, Kluwer Acad. Publ., Dordrecht, 1997, 1999 | Zbl 0887.47001

[18] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30, 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055 | Zbl 0598.28011

[19] Jachymski J., Matkowski J., Światkowski T., Nonlinear contractions on semimetric spaces, J. Appl. Anal., 1995, 1, 125–134 http://dx.doi.org/10.1515/JAA.1995.125 | Zbl 1295.54055

[20] Kirk W.A., Sims B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001 | Zbl 0970.54001

[21] Llorens-Fuster E., Petruşel A., Yao J.C., Iterated function systems and well-posedness, Chaos Solitons & Fractals, 2009, 41, 1561–1568 http://dx.doi.org/10.1016/j.chaos.2008.06.019 | Zbl 1198.52014

[22] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6

[23] Nadler S.B. Jr., Multivalued contraction mappings, Pacific J. Math., 1969, 30, 475–488 | Zbl 0187.45002

[24] Păcurar (Berinde) M., Iterative methods for fixed point approximation, Ph.D. thesis, Babeş-Bolyai University Cluj-Napoca, Romania, 2009

[25] Păcurar (Berinde) M., A fixed point result for ϕ-contractions on b-metric spaces without the boundedness assumption, preprint

[26] Petruşel A., Rus I.A., Well-posedness of the fixed point problem for multivalued operators, Applied Analysis and Differential Equations (Cârjă O., Vrabie I.I. (Eds.) World Scientific 2007, 295–306 | Zbl 1169.47037

[27] Petruşel A., Rus I.A., Yao J.C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 2007, 11, 903–914 | Zbl 1149.54022

[28] Rhoades B.E., Some theorems on weakly contractive maps, Nonlinear Anal., 2001, 47, 2683–2693 http://dx.doi.org/10.1016/S0362-546X(01)00388-1 | Zbl 1042.47521

[29] Rus I.A., Petruşel A., Sîntămărian A., Data dependence of the fixed points set of some multivalued weakly Picard operators, Nonlinear Anal., 2003, 52, 1947–1959 http://dx.doi.org/10.1016/S0362-546X(02)00288-2

[30] Rus I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001

[31] Rus I.A., Picard operators and applications, Sci. Math. Japon., 2003, 58, 191–219

[32] Rus I.A., Strict fixed point theory, Fixed Point Theory, 2003, 4, 177–183 | Zbl 1070.47519

[33] Rus I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 2008, 9, 541–559 | Zbl 1172.54030

[34] Singh S.L., Bhatnagar C., Mishra S.N., Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math., 2005, 37, 905–916 | Zbl 1100.47056

[35] Singh S.L., Prasad B., Kumar A., Fractals via iterated functions and multifunctions, Chaos Solitons & Fractals, 2009, 39, 1224–1231 http://dx.doi.org/10.1016/j.chaos.2007.06.014 | Zbl 1197.28004