From factorizations of noncommutative polynomials to combinatorial topology
Vladimir Retakh
Open Mathematics, Tome 8 (2010), p. 235-243 / Harvested from The Polish Digital Mathematics Library

This is an extended version of a talk given by the author at the conference “Algebra and Topology in Interaction” on the occasion of the 70th Anniversary of D.B. Fuchs at UC Davis in September 2009. It is a brief survey of an area originated around 1995 by I. Gelfand and the speaker.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269705
@article{bwmeta1.element.doi-10_2478_s11533-010-0008-5,
     author = {Vladimir Retakh},
     title = {From factorizations of noncommutative polynomials to combinatorial topology},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {235-243},
     zbl = {1207.16033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0008-5}
}
Vladimir Retakh. From factorizations of noncommutative polynomials to combinatorial topology. Open Mathematics, Tome 8 (2010) pp. 235-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0008-5/

[1] Björner A., Topological Methods, In: Handbook of Combinatorics, MIT Press, Cambridge, MA, 1995, 1819–1872

[2] Cassidy T., Phan C., Shelton B., Noncommutative Koszul algebras from combinatorial topology, J. Reine Angew. Math., to appear | Zbl 1225.16012

[3] Gelfand I., Gelfand S., Retakh V., Serconek S., Wilson R., Hilbert series of quadratic algebras associated with decompositions of noncommutative polynomials, J. Algebra, 2002, 254, 279–299 http://dx.doi.org/10.1016/S0021-8693(02)00081-9 | Zbl 1015.16034

[4] Gelfand I., Gelfand S., Retakh V., Wilson R., Quasideterminants, Advances in Math., 2005, 193, 56–141 http://dx.doi.org/10.1016/j.aim.2004.03.018

[5] Gelfand I., Gelfand S., Retakh V., Wilson R., Factorizations of polynomials over noncommutative algebras and sufficient sets of edges in directed graphs, Lett. Math. Physics, 2005, 74, 153–167 http://dx.doi.org/10.1007/s11005-005-0024-8 | Zbl 1112.05048

[6] Gelfand I., Krob D., Lascoux A., Leclerc B., Retakh V., Thibon J.-Y., Noncommutative symmetric functions, Advances in Math., 1995, 112, 218–348 http://dx.doi.org/10.1006/aima.1995.1032 | Zbl 0831.05063

[7] Gelfand I., Retakh V., Determinants of matrices over moncommutative rings, Funct. Anal. Appl., 1991, 25, 91–102 http://dx.doi.org/10.1007/BF01079588 | Zbl 0748.15005

[8] Gelfand I., Retakh V., A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl., 1992, 26(4), 1–20 | Zbl 0799.15003

[9] Gelfand I., Retakh V., A theory of noncommutative determinants and characteristic functions of graphs. I, Publ. LACIM, UQAM, Montreal, 1993, 1–26

[10] Gelfand I., Retakh V., Noncommutative Vieta theorem and symmetric functions, In: Gelfand Mathematical Seminars 1993–95, Birkhäuser, Boston, 1996, 93–100 | Zbl 0865.05074

[11] Gelfand I., Retakh V., Quasideterminants, I, Selecta Math., 1997, 3, 517–546 http://dx.doi.org/10.1007/s000290050019

[12] Gelfand I., Retakh V., Serconek S., Wilson R., On a class of algebras associated to directed graphs, Selecta Math., 2005, 11, 281–295 http://dx.doi.org/10.1007/s00029-005-0005-x | Zbl 1080.05040

[13] Gelfand I., Retakh V., Wilson R., Quadratic-linear algebras associated with decompositions of noncommutative polynomials and differential polynomials, Selecta Math., 2001, 7, 493–523 http://dx.doi.org/10.1007/s00029-001-8096-5 | Zbl 0992.16025

[14] Osofsky B., Quasideterminants and right roots of polynomials over division rings, In: Algebras, Rings and Their Representations, World Sci. Publ., Singapore, 2006, 241–263 http://dx.doi.org/10.1142/9789812774552_0015 | Zbl 1110.15009

[15] Osofsky B., Noncommutative linear algebra, Contemp. Math., 2006, 419, 231–254 | Zbl 1115.15006

[16] Piontkovski D., Algebras associated to pseudo-roots of noncommutative polynomials are Koszul, Intern. J. Algebra Comput., 2005, 15, 643–648 http://dx.doi.org/10.1142/S0218196705002396 | Zbl 1108.16024

[17] Polischuk A., Positselski L., Quadratic Algebras, Amer. Math. Soc., Providence, RI, 2005

[18] Retakh V., Serconek S., Wilson R., On a class of Koszul algebras associated to directed graphs, J. Algebra, 2006, 304, 1114–1129 http://dx.doi.org/10.1016/j.jalgebra.2005.11.005 | Zbl 1127.16022

[19] Retakh V., Serconek S., Wilson R., Hilbert series of algebras associated to directed graphs, J. of Algebra, 2007, 312, 142–151 http://dx.doi.org/10.1016/j.jalgebra.2006.06.048 | Zbl 1139.16015

[20] Retakh V., Serconek S., Wilson R., Construction of some algebras associated to directed graphs and related to factorizations of noncommutative polynomials, Contemp. Math., 442, Amer. Math. Soc., Providence, RI, 2007 | Zbl 1138.05324

[21] Retakh V., Serconek S., Wilson R., Koszulity of splitting algebras associated with cell complexes, J. Algebra, 2010, 323, 983–999 http://dx.doi.org/10.1016/j.jalgebra.2009.11.039 | Zbl 1234.16017

[22] Retakh V., Serconek S., Wilson R., Hilbert series of some algebras associated with directed graphs and cohomology (in preparation) | Zbl 1139.16015

[23] Retakh V., Wilson R., Advanced course on quasideterminants and universal localization, CRM, Barcelona, 2007

[24] Retakh V., Wilson R., Algebras associated to directed acyclic graphs, Adv. Appl. Math., 2009, 42, 42–59 http://dx.doi.org/10.1016/j.aam.2008.04.002 | Zbl 1177.05127

[25] Sadofsky H., Shelton B., The Koszul property as a topological invariant and measure of singularities, preprint available at arXiv:0911.2541 | Zbl 1259.58014

[26] Serconek S., Wilson R., Quadratic algebras associated with decompositions of noncommutative polynomials are Koszul algebras, J. Algebra, 2004, 278, 473–493 http://dx.doi.org/10.1016/S0021-8693(03)00340-5 | Zbl 1062.16036