We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.
@article{bwmeta1.element.doi-10_2478_s11533-010-0007-6, author = {Andrei Chites and Costel Chites}, title = {Separable K-linear categories}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {274-281}, zbl = {1198.18007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0007-6} }
Andrei Chiteș; Costel Chiteș. Separable K-linear categories. Open Mathematics, Tome 8 (2010) pp. 274-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0007-6/
[1] Ardizzoni A., Menini C., Ştefan D., Hochschild cohomology and “smoothness” in monoidal categories, J. Pure Appl. Algebra, 2007, 208, 297–330 http://dx.doi.org/10.1016/j.jpaa.2005.12.003 | Zbl 1116.18004
[2] Mitchell B., Rings with several objects, Adv. Math., 1972, 8, 1–161 http://dx.doi.org/10.1016/0001-8708(72)90002-3
[3] Mitchell B., Theory of categories, Academic PressInc., New York, 1965
[4] McCarthy R., The cyclichomology of anexact category, J. Pure Appl. Algebra, 1994, 93, 251–296 http://dx.doi.org/10.1016/0022-4049(94)90091-4
[5] Herscovich E., Solotar A., Hochschild-Mitchell cohomology and Galois extensions, J. Pure Appl. Algebra, 2007, 209, 37–55 http://dx.doi.org/10.1016/j.jpaa.2006.05.012 | Zbl 1118.16012
[6] Weibel C.A., An introduction to homological algebra, Cambridge University Press, Cambridge, 1995