The groups of points on abelian varieties over finite fields
Sergey Rybakov
Open Mathematics, Tome 8 (2010), p. 282-288 / Harvested from The Polish Digital Mathematics Library

Let A be an abelian variety with commutative endomorphism algebra over a finite field k. The k-isogeny class of A is uniquely determined by a Weil polynomial f A without multiple roots. We give a classification of the groups of k-rational points on varieties from this class in terms of Newton polygons of f A(1 − t).

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268981
@article{bwmeta1.element.doi-10_2478_s11533-010-0003-x,
     author = {Sergey Rybakov},
     title = {The groups of points on abelian varieties over finite fields},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {282-288},
     zbl = {1198.14043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0003-x}
}
Sergey Rybakov. The groups of points on abelian varieties over finite fields. Open Mathematics, Tome 8 (2010) pp. 282-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0003-x/

[1] Berthelot P., Ogus A., Notes on crystalline cohomology, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1978 | Zbl 0383.14010

[2] Demazure M., Lectures on p-divisible groups, Lecture notes in mathematics 302, Springer-Verlag, Berlin, 1972

[3] Kedlaya K., p-adic differential equations, Cambridge University Press, to appear, web draft available at http://wwwmath.mit.edu/?kedlaya/papers/pde.pdf

[4] Rück H.-G., A note on elliptic curves over finite fields. Math. Comp. 1987, 49(179), 301–304 http://dx.doi.org/10.2307/2008268 | Zbl 0628.14019

[5] Schoof R., Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A, 1987, 46(2), 183–211 http://dx.doi.org/10.1016/0097-3165(87)90003-3

[6] Tsfasman M.A., The group of points of an elliptic curve over a finite field, Theory of numbers and its applications, Tbilisi, 1985, 286–287

[7] Tsfasman M., Vladut S., Nogin D., Algebraic geometric codes: basic notions, Mathematical Surveys and Monographs, 139, American Mathematical Society, Providence, RI, 2007 | Zbl 1127.94001

[8] Voloch J.F., A note on elliptic curves over finite fields, Bull. Soc. Math. France, 1988, 116(4), 455–458 | Zbl 0688.14015

[9] Waterhouse W., Abelian varieties over finite fields, Ann. scient. Éc. Norm. Sup., 1969, 4 serie 2, 521–560 | Zbl 0188.53001

[10] Waterhouse W., Milne J., Abelian varieties over finite fields, Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969, 53–64 | Zbl 0216.33102

[11] Xing Ch., The structure of the rational point groups of simple abelian varieties of dimension two over finite fields, Arch. Math., 1994, 63, 427–430 http://dx.doi.org/10.1007/BF01196672 | Zbl 0813.14015

[12] Xing Ch., On supersingular abelian varieties of dimension two over finite fields, Finite Fields Appl., 1996, 2(4), 407–421 http://dx.doi.org/10.1006/ffta.1996.0024