Continuous tree-like scales
James Cummings
Open Mathematics, Tome 8 (2010), p. 314-318 / Harvested from The Polish Digital Mathematics Library

Answering a question raised by Luis Pereira, we show that a continuous tree-like scale can exist above a supercompact cardinal. We also show that the existence of a continuous tree-like scale at ℵω is consistent with Martin’s Maximum.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269205
@article{bwmeta1.element.doi-10_2478_s11533-010-0001-z,
     author = {James Cummings},
     title = {Continuous tree-like scales},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {314-318},
     zbl = {1207.03052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0001-z}
}
James Cummings. Continuous tree-like scales. Open Mathematics, Tome 8 (2010) pp. 314-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0001-z/

[1] Brooke-Taylor A., Friedman S.D., Large cardinals and gap-1 morasses, Ann. Pure Appl. Logic, 2009, 159, 71–99 http://dx.doi.org/10.1016/j.apal.2008.10.007 | Zbl 1165.03033

[2] Cummings J., Notes on singular cardinal combinatorics, Notre Dame J. Formal Logic, 2005, 46, 251–282 http://dx.doi.org/10.1305/ndjfl/1125409326 | Zbl 1121.03053

[3] Cummings J., Foreman M., Magidor M., Squares, scales and stationary reflection, J. Math. Log., 2001, 1, 35–98 http://dx.doi.org/10.1142/S021906130100003X | Zbl 0988.03075

[4] Cummings J., Foreman M., Magidor M., The non-compactness of square, J. Symbolic Logic, 2003, 68, 637–643 http://dx.doi.org/10.2178/jsl/1052669068 | Zbl 1069.03032

[5] Cummings J., Foreman M., Magidor M., Canonical structure in the universe of set theory I, Ann. Pure Appl. Logic, 2004, 129, 211–243 http://dx.doi.org/10.1016/j.apal.2004.04.002 | Zbl 1058.03051

[6] Cummings J., Foreman M., Magidor M., Canonical structure in the universe of set theory II, Ann. Pure Appl. Logic, 2006, 142, 55–75 http://dx.doi.org/10.1016/j.apal.2005.11.007 | Zbl 1096.03060

[7] Foreman M., Magidor M., A very weak square principle, J. Symbolic Logic, 1997, 62, 175–196 http://dx.doi.org/10.2307/2275738 | Zbl 0880.03022

[8] Foreman M., Magidor M., Shelah S., Martin’s maximum, saturated ideals, and nonregular ultrafilters, I. Ann. of Math., 1988, 127, 1–47 http://dx.doi.org/10.2307/1971415 | Zbl 0645.03028

[9] Gitik M., On a question of Pereira, Arch. Math. Logic, 2008, 47, 53–64 http://dx.doi.org/10.1007/s00153-008-0070-x | Zbl 1145.03024

[10] Laver R., Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math., 1978, 29, 385–388 http://dx.doi.org/10.1007/BF02761175 | Zbl 0381.03039

[11] Magidor M., Shelah S., When does almost free imply free? (for groups, transversals etc.), J. Amer. Math. Soc., 1994, 7, 769–830 http://dx.doi.org/10.2307/2152733 | Zbl 0819.20059

[12] Pereira L., Combinatoire des cardinaux singuliers et structures PCF, Thesis, University of Paris VII, 2007

[13] Shelah S., Semiproper forcing axiom implies Martin maximum but not PFA+, J. Symbolic Logic, 1987, 52, 360–367 http://dx.doi.org/10.2307/2274385 | Zbl 0625.03035

[14] Shelah S., PCF and infinite free subsets in an algebra, Arch. Math. Logic, 2002, 41, 321–359 http://dx.doi.org/10.1007/s001530100101 | Zbl 1049.03034