A deformation of commutative polynomial algebras in even numbers of variables
Wenhua Zhao
Open Mathematics, Tome 8 (2010), p. 73-97 / Harvested from The Polish Digital Mathematics Library

We introduce and study a deformation of commutative polynomial algebras in even numbers of variables. We also discuss some connections and applications of this deformation to the generalized Laguerre orthogonal polynomials and the interchanges of right and left total symbols of differential operators of polynomial algebras. Furthermore, a more conceptual re-formulation for the image conjecture [18] is also given in terms of the deformed algebras. Consequently, the well-known Jacobian conjecture [8] is reduced to an open problem on this deformation of polynomial algebras.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269483
@article{bwmeta1.element.doi-10_2478_s11533-009-0074-8,
     author = {Wenhua Zhao},
     title = {A deformation of commutative polynomial algebras in even numbers of variables},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {73-97},
     zbl = {1189.33022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0074-8}
}
Wenhua Zhao. A deformation of commutative polynomial algebras in even numbers of variables. Open Mathematics, Tome 8 (2010) pp. 73-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0074-8/

[1] Andrews G.F., Askey R., Roy R., Special functions. Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999

[2] Bass H., Connell E., Wright D., The Jacobian conjecture, reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 1982, 7, 287–330 http://dx.doi.org/10.1090/S0273-0979-1982-15032-7 | Zbl 0539.13012

[3] Björk J.-E., Rings of differential operators, North-Holland Publishing Co., Amsterdam-New York, 1979

[4] Coutinho S.C., A primer of algebraic D-modules, London Mathematical Society Student Texts, 33, Cambridge University Press, Cambridge, 1995 | Zbl 0848.16019

[5] Dunkl C., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001

[6] van den Essen A., Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Birkhäuser Verlag, Basel, 2000 | Zbl 0962.14037

[7] Filaseta M., Lam T.-Y., On the irreducibility of the generalized Laguerre polynomials, Acta Arith., 2002, 105(2), 177–182 http://dx.doi.org/10.4064/aa105-2-4 | Zbl 1010.12001

[8] Keller O.H., Ganze Gremona-Transformationen, Monats. Math. Physik, 1939, 47(1), 299–306 (in German) http://dx.doi.org/10.1007/BF01695502

[9] Laguerre E., Sur l′ intégrale 0e-xdxx , Bull. Soc. Math. France, 1879, 7, reprinted in Oeuvres, 1971, 1, 428–437 (in French)

[10] Pólya G., Szegö G., Problems and theorems in analysis, Vol. II,, Revised and enlarged translation by C.E. Billigheimer of the fourth German edition, Springer Study Edition, Springer-Verlag, New York-Heidelberg, 1976 | Zbl 0359.00003

[11] Schur I., Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, I, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl., 1929, 14, 125–136 (in German) | Zbl 55.0069.03

[12] Schur I., Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, Journal für die reine und angewandte Mathematik, 1931, 165, 52–58 (in German) http://dx.doi.org/10.1515/crll.1931.165.52 | Zbl 57.0125.05

[13] Szegö G., Orthogonal Polynomials, 4th edition, American Mathematical Society, Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975

[14] Wolfram Research, http://functions.wolfram.com/Polynomials/LaguerreL/

[15] Wolfram Research, http://functions.wolfram.com/Polynomials/LaguerreL3/

[16] Zhao W., Hessian Nilpotent Polynomials and the Jacobian Conjecture, Trans. Amer. Math. Soc., 2007, 359(1), 249–274 http://dx.doi.org/10.1090/S0002-9947-06-03898-0 | Zbl 1109.14041

[17] Zhao W., A Vanishing Conjecture on Differential Operators with Constant Coefficients, Acta Mathematica Vietnamica, 2007, 32(3), 259–285 | Zbl 1139.14303

[18] Zhao W., Images of commuting differential operators of order one with constant leading coefficients, preprint available at http://arxiv.org/abs/0902.0210 | Zbl 1197.14064

[19] Zhao W., Generalizations of the Image Conjecture and the Mathieu Conjecture, J. Pure Appl. Algebra, doi:10.1016/j.jpaa.2009.10.007 | Zbl 1205.33017

[20] Zhao W., New Proofs for the Abhyankar-Gujar Inversion Formula and the Equivalence of the Jacobian Conjecture and the Vanishing Conjecture, preprint available at http://arxiv.org/abs/0907.3991