A procedure to compute prime filtration
Asia Rauf
Open Mathematics, Tome 8 (2010), p. 26-31 / Harvested from The Polish Digital Mathematics Library

Let K be a field, S = K[x 1, … x n] be a polynomial ring in n variables over K and I ⊂ S be an ideal. We give a procedure to compute a prime filtration of S/I. We proceed as in the classical case by constructing an ascending chain of ideals of S starting from I and ending at S. The procedure of this paper is developed and has been implemented in the computer algebra system Singular.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269014
@article{bwmeta1.element.doi-10_2478_s11533-009-0073-9,
     author = {Asia Rauf},
     title = {A procedure to compute prime filtration},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {26-31},
     zbl = {1184.13068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0073-9}
}
Asia Rauf. A procedure to compute prime filtration. Open Mathematics, Tome 8 (2010) pp. 26-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0073-9/

[1] Greuel G.-M., Pfister G., A Singular introduction to commutative algebra, 2nd ed., Springer-Verlag, 2007

[2] Greuel G.-M., Pfister G., Schönemann H., Singular 2.0. A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern, 2001, http://www.singular.uni-kl.de | Zbl 0902.14040

[3] Herzog J., Popescu D., Finite filtrations of modules and shellable multicomplexes, Manuscripta Math., 2006, 121(3), 385–410 http://dx.doi.org/10.1007/s00229-006-0044-4 | Zbl 1107.13017

[4] Herzog J., Vladoiu M., Zheng X., How to compute the Stanley depth of a monomial ideal, J. Alg., 2009, 322(9), 3151–3169 http://dx.doi.org/10.1016/j.jalgebra.2008.01.006 | Zbl 1186.13019

[5] Jahan A.S., Prime filtrations of monomial ideals and polarizations, J. Alg., 2007, 312(2), 1011–1032 http://dx.doi.org/10.1016/j.jalgebra.2006.11.002 | Zbl 1142.13022

[6] Matsumura H., Commutative ring theory, Cambridge University Press, Cambridge, 1986

[7] Rauf A., Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Math. Soc. Sc. Math. Roumanie, 2007, 50(98), 347–354 | Zbl 1155.13311

[8] Rauf A., Depth and Stanley depth of multigraded modules, preprint available at http://arxiv.org/abs/0812.2080v2 | Zbl 1193.13025