This paper represents a start in the study of epimorphisms in some categories of Hilbert algebras. Even if we give a complete characterization for such epimorphisms only for implication algebras, the following results will make possible the construction of some examples of epimorphisms which are not surjective functions. Also, we will show that the study of epimorphisms of Hilbert algebras is equivalent with the study of epimorphisms of Hertz algebras.
@article{bwmeta1.element.doi-10_2478_s11533-009-0070-z, author = {Dumitru Bu\c sneag and Mircea Ghi\c t\u a}, title = {Some properties of epimorphisms of Hilbert algebras}, journal = {Open Mathematics}, volume = {8}, year = {2010}, pages = {41-52}, zbl = {1192.03050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0070-z} }
Dumitru Buşneag; Mircea Ghiţă. Some properties of epimorphisms of Hilbert algebras. Open Mathematics, Tome 8 (2010) pp. 41-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0070-z/
[1] Balbes R., Dwinger Ph., Distributive lattices, Missouri Univ. Press, Columbia, Missouri, 1975 | Zbl 0231.06017
[2] Buşneag D., Categories of algebraic logic, Editura Academiei Române, Bucharest, 2006 | Zbl 05191994
[3] Celani S.A., Cabrer L.M., Duality for finite Hilbert algebras, Discrete Math., 2005, 305(1–3), 74–99 http://dx.doi.org/10.1016/j.disc.2005.09.002 | Zbl 1084.03050
[4] Celani S.A., Cabrer L.M., Topological duality for Tarski algebras, Algebra Universalis, 2007, 58, 73–94 http://dx.doi.org/10.1007/s00012-007-2041-1
[5] Diego A., Sur les algèbres de Hilbert, Collection de Logique Mathematique, Série A, 1966, 21, 1–54 (in French)
[6] Figallo Jr A., Ziliani A., Remarks on Hertz algebras and implicative semilattices, Bull. Sect. Logic Univ. Lódz, 2005, 1(34), 37–42 | Zbl 1114.03312
[7] Figallo A.V., Ramon G., Saad S., A note on the Hilbert algebras with infimum, Math. Contemp., 2003, 24, 23–37 | Zbl 1082.03057
[8] Gluschankof D., Tilli M., Maximal Deductive Systems and Injective Objects in the Category of Hilbert Algebras, Zeitschr. Für Math. Logik und Grundlagen der Math., 1988, 34, 213–220 http://dx.doi.org/10.1002/malq.19880340305 | Zbl 0657.03032
[9] Jun Y.B., Commutative Hilbert Algebras, Soochow J. Math., 1996, 22(4), 477–484 | Zbl 0864.03042
[10] Porta H., Sur quelques algèbres de la Logique, Port. Math., 1981, 40(1), 41–77
[11] Rasiowa H., An algebraic approach to non-classical logics, Stud. Logic Found. Math., 1974, 78
[12] Torrens A., On The Role of The Polynomial (X → Y) → Y in Some Implicative Algebras, Zeitschr. Für Math. Logik und Grundlagen der Math., 1988, 34(2), 117–122 http://dx.doi.org/10.1002/malq.19880340205 | Zbl 0621.03043
[13] Taşcău D.D., Some properties of the operation x ∪ y = (x → y) → ((y → x) → x) in a Hilbert algebra, An. Univ. Craiova Ser. Mat. Inform., 2007, 34(1), 78–81 | Zbl 1174.03358