Characterization of α1 and α2-matrices
Rafael Bru ; Ljiljana Cvetković ; Vladimir Kostić ; Francisco Pedroche
Open Mathematics, Tome 8 (2010), p. 32-40 / Harvested from The Polish Digital Mathematics Library

This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:268975
@article{bwmeta1.element.doi-10_2478_s11533-009-0068-6,
     author = {Rafael Bru and Ljiljana Cvetkovi\'c and Vladimir Kosti\'c and Francisco Pedroche},
     title = {Characterization of $\alpha$1 and $\alpha$2-matrices},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {32-40},
     zbl = {1188.15025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0068-6}
}
Rafael Bru; Ljiljana Cvetković; Vladimir Kostić; Francisco Pedroche. Characterization of α1 and α2-matrices. Open Mathematics, Tome 8 (2010) pp. 32-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0068-6/

[1] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, Revised reprint of the 1979 original, SIAM, Philadelphia, 1994 | Zbl 0815.15016

[2] Bru R., Pedroche F., Szyld D.B., Subdirect sums of S-Strictly Diagonally Dominant matrices, Electron. J. Linear Algebra, 2006, 15, 201–209 | Zbl 1142.15307

[3] Cvetkovic L., H-matrix theory vs. eigenvalue localization, Numerical Algorithms, 2006, 42, 229–245 http://dx.doi.org/10.1007/s11075-006-9029-3 | Zbl 1107.15012

[4] Cvetkovic L., Kostic V., New criteria for identifying H-matrices, J. Comput. Appl. Math., 2005, 180, 265–278 http://dx.doi.org/10.1016/j.cam.2004.10.017 | Zbl 1073.65038

[5] Elsner L., Mehrmann V., Convergence of block-iterative methods for linear systems arising in the numerical solution of Euler equations, Numer. Math., 1991, 59, 541–560 http://dx.doi.org/10.1007/BF01385795 | Zbl 0744.65026

[6] Fallat S.M., Johnson C.R., Sub-direct sums and positivity classes of matrices, Linear Algebra Appl., 1999, 288, 149–173 http://dx.doi.org/10.1016/S0024-3795(98)10194-5 | Zbl 0973.15013

[7] Gan T.B., Huang T.Z., Simple criteria for nonsingular H-matrices, Linear Algebra Appl., 2003, 374, 317–326 http://dx.doi.org/10.1016/S0024-3795(03)00646-3 | Zbl 1033.15019

[8] Huang T.Z., Leng S.S., Wachspress E.L., Tang Y.Y., Characterization of H-matrices, Computers & Mathematics with applications, 2004, 48(10–11), 1587–1601 http://dx.doi.org/10.1016/j.camwa.2004.04.034

[9] Ostrowski A.M., Über die Determinanten mit überwiegender Hauptdiagonale, Comentarii Mathematici Helvetici, 1937, 10, 69–96 (in German) http://dx.doi.org/10.1007/BF01214284 | Zbl 63.0035.01

[10] Spiteri P., A new characterization of M-matrices and H-matrices, BIT, 2003, 43, 1019–1032 http://dx.doi.org/10.1023/B:BITN.0000014562.10957.a4 | Zbl 1053.65022

[11] Varga R.S., Geršgorin and his circles, Springer Series in Computational Mathematics, Vol. 36, Springer, Berlin, Heidelberg, 2004 | Zbl 1057.15023

[12] Zhu Y., Huang T.Z., Subdirect sums of doubly diagonally dominant matrices, Electron. J. Linear Algebra, 2007, 16, 171–182 | Zbl 1151.15025