On totally inert simple groups
Martyn Dixon ; Martin Evans ; Antonio Tortora
Open Mathematics, Tome 8 (2010), p. 22-25 / Harvested from The Polish Digital Mathematics Library

A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269299
@article{bwmeta1.element.doi-10_2478_s11533-009-0067-7,
     author = {Martyn Dixon and Martin Evans and Antonio Tortora},
     title = {On totally inert simple groups},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {22-25},
     zbl = {1204.20030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0067-7}
}
Martyn Dixon; Martin Evans; Antonio Tortora. On totally inert simple groups. Open Mathematics, Tome 8 (2010) pp. 22-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0067-7/

[1] Belyaev V.V., Inert subgroups in infinite simple groups, Sibirsk. Mat. Zh., 1939, 34(4), 17–23 (in Russian), English translation: Siberian Math. J., 1993, 34(4), 606–611

[2] Belyaev V.V., Locally finite groups containing a finite inseparable subgroup, Sibirsk. Mat. Zh., 1993, 34, 23–41 (in Russian), English translation: Siberian Math. J., 1993, 34, 218–232

[3] Belyaev V.V., Inert subgroups in simple locally finite groups, In: Finite and locally finite groups, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, 213–218, Kluwer Acad. Publ., Dordrecht, 1995 | Zbl 0838.20033

[4] Belyaev V.V., Kuzucuoǧlu M., Seçkin E., Totally inert groups, Rend. Sem. Mat. Univ. Padova, 1999, 102, 151–156 | Zbl 0945.20022

[5] Bergman G. M., Lenstra H. W. Jr., Subgroups close to normal subgroups, J. Algebra, 1989, 127(1), 80–97 http://dx.doi.org/10.1016/0021-8693(89)90275-5

[6] Dixon M.R., Evans M. J., Smith H., Embedding groups in locally (soluble-by-finite) simple groups, J. Group Theory, 2006, 9, 383–395 http://dx.doi.org/10.1515/JGT.2006.026 | Zbl 1120.20030

[7] Kegel O.H., Wehrfritz B.A.F., Locally finite groups, North Holland, Amsterdam, 1973

[8] Neumann H., Varieties of groups, Springer-Verlag, NewYork, 1967

[9] Olshanskii A.Yu., An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 44(2), 309–321

[10] Robinson D.J.S., Finiteness conditions and generalized soluble groups, Springer-Verlag, 1972 | Zbl 0243.20032

[11] Robinson D.J.S., A course in the theory of groups, 2nd edition, Springer-Verlag, NewYork, 1996

[12] Robinson D.J.S., On inert subgroups of a group, Rend. Sem. Mat. Univ. Padova, 2006, 115, 137–159 | Zbl 1167.20319

[13] Zel’manov E.I., Solution of the restricted Burnside’s problem for groups of odd exponent, Math. USSR-Izv., 1991, 36(1), 41–60 http://dx.doi.org/10.1070/IM1991v036n01ABEH001946

[14] Zel’manov E.I., Solution of the restricted Burnside problem for 2-groups, Mat. Sb., 1991, 182(4), 568–592 (in Russian), English translation: Math. USSR-Sb., 1992, 72(2), 543–565 | Zbl 0752.20017