On an integral transform by R. S. Phillips
Sten Bjon
Open Mathematics, Tome 8 (2010), p. 98-113 / Harvested from The Polish Digital Mathematics Library

The properties of a transformation ff˜h by R.S. Phillips, which transforms an exponentially bounded C 0-semigroup of operators T(t) to a Yosida approximation depending on h, are studied. The set of exponentially bounded, continuous functions f: [0, ∞[→ E with values in a sequentially complete L c-embedded space E is closed under the transformation. It is shown that (f˜h)k˜=f˜h+k for certain complex h and k, and that f(t)=limh0+f˜h(t) , where the limit is uniform in t on compact subsets of the positive real line. If f is Hölder-continuous at 0, then the limit is uniform on compact subsets of the non-negative real line. Inversion formulas for this transformation as well as for the Laplace transformation are derived. Transforms of certain semigroups of non-linear operators on a subset X of an L c-embedded space are studied through the C 0-semigroups, which they define by duality on a space of functions on X.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269503
@article{bwmeta1.element.doi-10_2478_s11533-009-0058-8,
     author = {Sten Bjon},
     title = {On an integral transform by R. S. Phillips},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {98-113},
     zbl = {1202.44002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0058-8}
}
Sten Bjon. On an integral transform by R. S. Phillips. Open Mathematics, Tome 8 (2010) pp. 98-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0058-8/

[1] Beattie R., Butzmann H.-P., Convergence structures and applications to functional analysis, Kluwer Academic Publishers, Dordrecht, 2002 | Zbl 1246.46003

[2] Binz E., Keller H.H., Funktionenräume in der Kategorie der Limesräume, Ann. Acad. Sci. Fenn. Ser. A I, 1966, 383, 1–21 | Zbl 0158.19903

[3] Bjon S., Lindström M., A general approach to infinite-dimensional holomorphy, Monatsh. Math., 1986, 101, 11–26 http://dx.doi.org/10.1007/BF01326843 | Zbl 0579.46031

[4] Bjon S., Einbettbarkeit in den Bidualraum und Darstellbarkeit als projektiver Limes in Kategorien von Limesvektorräumen, Math. Nachr., 1979, 97, 103–116 http://dx.doi.org/10.1002/mana.19790930108 | Zbl 0441.46003

[5] Bjon S., On an exponential law for spaces of holomorphic mappings, Math. Nachr., 1987, 131, 201–204 http://dx.doi.org/10.1002/mana.19871310118 | Zbl 0635.54007

[6] Bjon S., Differentiation under the integral sign and holomorphy, Math. Scand., 1987, 60, 77–95 | Zbl 0613.46043

[7] Bjon S., One-parameter semigroups of operators on L c-embedded spaces, Semigroup Forum, 1994, 49, 369–380 http://dx.doi.org/10.1007/BF02573497

[8] Bobrowski A., On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math., 1997, 124, 281–290 | Zbl 0876.44001

[9] Bobrowski A., Inversion of the Laplace transform and generation of Abel summable semigroups, J. Funct. Anal., 2001, 186, 1–24 http://dx.doi.org/10.1006/jfan.2001.3782

[10] Frölicher A., Bucher W., Calculus in vector spaces without norm, Lecture Notes in Mathematics, 30, Springer-Verlag, Berlin, 1966 | Zbl 0156.38303

[11] Hille E., Phillips R.S., Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. XXXI, Amer. Math. Soc., Providence, 1957 | Zbl 0078.10004

[12] Ladyzhenskaya O., Attractors for semigroups and evolution equations, Cambridge University Press, Cambridge, 1991 | Zbl 0755.47049

[13] Müller B., L c- und c-einbettbare Limesräume, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 1978, 5, 509–526

[14] Phillips R.S., An inversion formula for Laplace transforms and semi-groups of linear operators, Annals of Math., 1954, 59, 325–356 http://dx.doi.org/10.2307/1969697 | Zbl 0059.10704

[15] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series, Vol. 4: Direct Laplace transforms, Gordon and Breach Sci. Publ., New York, 1992 | Zbl 0786.44003