On a q-analogue of Stancu operators
Octavian Agratini
Open Mathematics, Tome 8 (2010), p. 191-198 / Harvested from The Polish Digital Mathematics Library

This paper is concerned with a generalization in q-Calculus of Stancu operators. Involving modulus of continuity and Lipschitz type maximal function, we give estimates for the rate of convergence. A probabilistic approach is presented and approximation properties are established.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269149
@article{bwmeta1.element.doi-10_2478_s11533-009-0057-9,
     author = {Octavian Agratini},
     title = {On a q-analogue of Stancu operators},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {191-198},
     zbl = {1185.41018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0057-9}
}
Octavian Agratini. On a q-analogue of Stancu operators. Open Mathematics, Tome 8 (2010) pp. 191-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0057-9/

[1] Agratini O., Rus I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 2003, 44, 555–563 | Zbl 1096.41015

[2] Altomare F., Campiti M., Korovkin-type approximation theory and its applications, de Gruyter Series Studies in Mathematics, vol. 17, Walter de Gruyter & Co., Berlin, New York, 1994 | Zbl 0924.41001

[3] Andrews G.E., q-Series: Their development and application in analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences, Number 66, American Mathematical Society, 1986 | Zbl 0594.33001

[4] Aral A., A generalization of Szász-Mirakjan operators based on q-integers, Math. Comput. Model., 2008, 47, 1052–1062 http://dx.doi.org/10.1016/j.mcm.2007.06.018 | Zbl 1144.41303

[5] Aral A., Doğru O., Bleimann, Butzer and Hahn operators based on the q-integers, J. Ineq. & Appl., 2007, ID 79410 | Zbl 1133.41001

[6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 2005, 76, 269–290 | Zbl 1142.41002

[7] Doğru O., On statistical approximation properties of Stancu type bivariate generalization of q-Balász-Szabados operators, In: Agratini O., Blaga P. (Eds.), Proc. Int. Conference on Numerical Analysis and Approximation Theory, Cluj-Napoca, Romania, July 5–8, 2006, 179–194, Casa CăŢii de ştiinŢă, Cluj-Napoca, 2006 | Zbl 1151.41300

[8] Il’inskii A., Ostrovska S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 2002, 116, 100–112 http://dx.doi.org/10.1006/jath.2001.3657

[9] Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002 | Zbl 0986.05001

[10] Lencze B., On Lipschitz-type maximal functions and their smoothness spaces, Proc. Netherland Acad. Sci. A, 1998, 91, 53–63

[11] Lupaş A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint, 1987, 9, 85–92 | Zbl 0696.41023

[12] Lupaş A., q-analogues of Stancu operators, In: Lupaş A., Gonska H., Lupaş L. (Eds.), Mathematical analysis and approximation theory, The 5th Romanian-German Seminar on Approximation Theory and its Applications, RoGer 2002, Sibiu, Burg Verlag, 2002, 145–154

[13] Nowak G., Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 2009, 350, 50–55 http://dx.doi.org/10.1016/j.jmaa.2008.09.003 | Zbl 1162.33009

[14] Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123, 232–255 http://dx.doi.org/10.1016/S0021-9045(03)00104-7

[15] Ostrovska S., The first decade of the q-Bernstein polynomials: Results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2007, 2, 35–51 | Zbl 1159.41301

[16] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 | Zbl 0881.41008

[17] Phillips G.M., A generalization of the Bernstein polynomials based on the q-integers, Anziam J., 2000, 42, 79–86 http://dx.doi.org/10.1017/S1446181100011615 | Zbl 0963.41005

[18] Shisha O., Mond B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA, 1968, 60, 1196–1200 http://dx.doi.org/10.1073/pnas.60.4.1196 | Zbl 0164.07102

[19] Stancu D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 1968, 8, 1173–1194 | Zbl 0167.05001

[20] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 | Zbl 1023.41022

[21] Videnskii V.S., On some classes of q-parametric positive operators, Operator Theory Adv. Appl., 2005, 158, 213–222 http://dx.doi.org/10.1007/3-7643-7340-7_15 | Zbl 1088.41008

[22] Wang H., Voronovskaja type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2007, 145, 182–195 http://dx.doi.org/10.1016/j.jat.2006.08.005 | Zbl 1112.41016