Homological Mirror Symmetry for manifolds of general type
Anton Kapustin ; Ludmil Katzarkov ; Dmitri Orlov ; Mirroslav Yotov
Open Mathematics, Tome 7 (2009), p. 571-605 / Harvested from The Polish Digital Mathematics Library

In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:268959
@article{bwmeta1.element.doi-10_2478_s11533-009-0056-x,
     author = {Anton Kapustin and Ludmil Katzarkov and Dmitri Orlov and Mirroslav Yotov},
     title = {Homological Mirror Symmetry for manifolds of general type},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {571-605},
     zbl = {1200.53079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0056-x}
}
Anton Kapustin; Ludmil Katzarkov; Dmitri Orlov; Mirroslav Yotov. Homological Mirror Symmetry for manifolds of general type. Open Mathematics, Tome 7 (2009) pp. 571-605. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0056-x/

[1] Abouzaid M., On the Fukaya categories of higher genus surfaces, Adv. Math., 2008, 217(3), 1192–1235 http://dx.doi.org/10.1016/j.aim.2007.08.011[WoS][Crossref] | Zbl 1155.57029

[2] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math., 2006, 166(3), 537–582 http://dx.doi.org/10.1007/s00222-006-0003-4[Crossref] | Zbl 1110.14033

[3] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for weighted projective planes and their noncommutative deformations, preprint available at http://arxiv.org/abs/math/0404281 | Zbl 1175.14030

[4] Bondal A., Kapranov M., Framed triangulated categories, Mat. Sb., 1990, 181(5), 669–683 (in Russian), English translation: Math. USSR-Sb., 1991, 70(1), 93–107

[5] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, preprint available at http://arxiv.org/abs/alg-geom/9506012

[6] Bridgeland T., King A., Reid M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 2001, 14(3), 535–554 http://dx.doi.org/10.1090/S0894-0347-01-00368-X[Crossref] | Zbl 0966.14028

[7] Candelas P., de la Ossa X., Green P., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 1991, 359(1), 21–74 http://dx.doi.org/10.1016/0550-3213(91)90292-6[Crossref] | Zbl 1098.32506

[8] Cox D., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 | Zbl 0951.14026

[9] Efimov A., Homological mirror symmetry for curves of higher genus, preprint available at http://arxiv.org/abs/0907.3903 | Zbl 1242.14039

[10] Fukaya K., Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom., 2002, 11(3), 393–512 | Zbl 1002.14014

[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory - anomaly and obstruction, preprint available at http://www.math.kyoto-u.ac.jp/fukaya/fukaya.html | Zbl 1181.53003

[12] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Volume 1, Clay Mathematics Monographs, American Mathematical Society, Providence, RI, 2003 | Zbl 1044.14018

[13] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 | Zbl 1044.14018

[14] Kapustin A., Orlov D., Remarks on A-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 2003, 48(1), 84–99 http://dx.doi.org/10.1016/S0393-0440(03)00026-3[Crossref] | Zbl 1029.81058

[15] Kapustin A., Orlov D., Lectures on mirror symmetry, derived categories, and D-branes, Russian Math. Surveys, 2004, 59(5), 907–940 http://dx.doi.org/10.1070/RM2004v059n05ABEH000772[Crossref] | Zbl 1074.14036

[16] Kawamata Y., D-equivalence and K-equivalence, J. Differential Geom., 2002, 61(1), 147–171

[17] Kuznetsov A., Derived category of V 12 Fano threefolds, preprint available at http://arxiv.org/abs/math/0310008

[18] Mukai S., Non-Abelian Brill Noether theory and Fano 3 folds, preprint available at http://arxiv.org/abs/alg-geom/9704015 | Zbl 0929.14021

[19] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2), 1969, 89, 14–51 http://dx.doi.org/10.2307/1970807[Crossref] | Zbl 0186.54902

[20] Orlov D., Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York), 1997, 84(5), 1361–1381 http://dx.doi.org/10.1007/BF02399195[Crossref] | Zbl 0938.14019

[21] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 2004, 246, Algebr. Geom. Metody, Svyazi i Prilozh., 240–262, English translation: Proc. Steklov Inst. Math., 2004, 3, 227–248 | Zbl 1101.81093

[22] Orlov D., Mirror symmetry for higher genus curves, Lectures at University of Miami, January 2008, IAS, March 2008

[23] Orlov D., Formal completions and idempotent completions of triangulated categories of singularities, preprint available at http://arxiv.org/abs/0901.1859 [WoS] | Zbl 1216.18012

[24] Polishchuk A., Zaslow E., Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2, 1998, 2, 443–470 | Zbl 0947.14017

[25] Seidel P., More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), 429–465, World Sci. Publ., River Edge, NJ, 2001 | Zbl 1079.14529

[26] Seidel P., Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 351–360, Higher Ed. Press, Beijing, 2002

[27] Seidel P., Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, 2008 [WoS] | Zbl 1159.53001

[28] Seidel P., Homological mirror symmetry for the quartic surface, preprint available at http://arxiv.org/abs/math/0310414 | Zbl 1334.53091

[29] Seidel P., Homological mirror symmetry for the genus two curve, preprint available at http://arxiv.org/abs/0812.1171. | Zbl 1226.14028