In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.
@article{bwmeta1.element.doi-10_2478_s11533-009-0056-x, author = {Anton Kapustin and Ludmil Katzarkov and Dmitri Orlov and Mirroslav Yotov}, title = {Homological Mirror Symmetry for manifolds of general type}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {571-605}, zbl = {1200.53079}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0056-x} }
Anton Kapustin; Ludmil Katzarkov; Dmitri Orlov; Mirroslav Yotov. Homological Mirror Symmetry for manifolds of general type. Open Mathematics, Tome 7 (2009) pp. 571-605. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0056-x/
[1] Abouzaid M., On the Fukaya categories of higher genus surfaces, Adv. Math., 2008, 217(3), 1192–1235 http://dx.doi.org/10.1016/j.aim.2007.08.011[WoS][Crossref] | Zbl 1155.57029
[2] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math., 2006, 166(3), 537–582 http://dx.doi.org/10.1007/s00222-006-0003-4[Crossref] | Zbl 1110.14033
[3] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for weighted projective planes and their noncommutative deformations, preprint available at http://arxiv.org/abs/math/0404281 | Zbl 1175.14030
[4] Bondal A., Kapranov M., Framed triangulated categories, Mat. Sb., 1990, 181(5), 669–683 (in Russian), English translation: Math. USSR-Sb., 1991, 70(1), 93–107
[5] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, preprint available at http://arxiv.org/abs/alg-geom/9506012
[6] Bridgeland T., King A., Reid M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 2001, 14(3), 535–554 http://dx.doi.org/10.1090/S0894-0347-01-00368-X[Crossref] | Zbl 0966.14028
[7] Candelas P., de la Ossa X., Green P., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 1991, 359(1), 21–74 http://dx.doi.org/10.1016/0550-3213(91)90292-6[Crossref] | Zbl 1098.32506
[8] Cox D., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 | Zbl 0951.14026
[9] Efimov A., Homological mirror symmetry for curves of higher genus, preprint available at http://arxiv.org/abs/0907.3903 | Zbl 1242.14039
[10] Fukaya K., Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom., 2002, 11(3), 393–512 | Zbl 1002.14014
[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory - anomaly and obstruction, preprint available at http://www.math.kyoto-u.ac.jp/fukaya/fukaya.html | Zbl 1181.53003
[12] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Volume 1, Clay Mathematics Monographs, American Mathematical Society, Providence, RI, 2003 | Zbl 1044.14018
[13] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 | Zbl 1044.14018
[14] Kapustin A., Orlov D., Remarks on A-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 2003, 48(1), 84–99 http://dx.doi.org/10.1016/S0393-0440(03)00026-3[Crossref] | Zbl 1029.81058
[15] Kapustin A., Orlov D., Lectures on mirror symmetry, derived categories, and D-branes, Russian Math. Surveys, 2004, 59(5), 907–940 http://dx.doi.org/10.1070/RM2004v059n05ABEH000772[Crossref] | Zbl 1074.14036
[16] Kawamata Y., D-equivalence and K-equivalence, J. Differential Geom., 2002, 61(1), 147–171
[17] Kuznetsov A., Derived category of V 12 Fano threefolds, preprint available at http://arxiv.org/abs/math/0310008
[18] Mukai S., Non-Abelian Brill Noether theory and Fano 3 folds, preprint available at http://arxiv.org/abs/alg-geom/9704015 | Zbl 0929.14021
[19] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2), 1969, 89, 14–51 http://dx.doi.org/10.2307/1970807[Crossref] | Zbl 0186.54902
[20] Orlov D., Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York), 1997, 84(5), 1361–1381 http://dx.doi.org/10.1007/BF02399195[Crossref] | Zbl 0938.14019
[21] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 2004, 246, Algebr. Geom. Metody, Svyazi i Prilozh., 240–262, English translation: Proc. Steklov Inst. Math., 2004, 3, 227–248 | Zbl 1101.81093
[22] Orlov D., Mirror symmetry for higher genus curves, Lectures at University of Miami, January 2008, IAS, March 2008
[23] Orlov D., Formal completions and idempotent completions of triangulated categories of singularities, preprint available at http://arxiv.org/abs/0901.1859 [WoS] | Zbl 1216.18012
[24] Polishchuk A., Zaslow E., Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2, 1998, 2, 443–470 | Zbl 0947.14017
[25] Seidel P., More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), 429–465, World Sci. Publ., River Edge, NJ, 2001 | Zbl 1079.14529
[26] Seidel P., Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 351–360, Higher Ed. Press, Beijing, 2002
[27] Seidel P., Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, 2008 [WoS] | Zbl 1159.53001
[28] Seidel P., Homological mirror symmetry for the quartic surface, preprint available at http://arxiv.org/abs/math/0310414 | Zbl 1334.53091
[29] Seidel P., Homological mirror symmetry for the genus two curve, preprint available at http://arxiv.org/abs/0812.1171. | Zbl 1226.14028