Statistical approximation properties of q-Baskakov-Kantorovich operators
Vijay Gupta ; Cristina Radu
Open Mathematics, Tome 7 (2009), p. 809-818 / Harvested from The Polish Digital Mathematics Library

In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269433
@article{bwmeta1.element.doi-10_2478_s11533-009-0055-y,
     author = {Vijay Gupta and Cristina Radu},
     title = {Statistical approximation properties of q-Baskakov-Kantorovich operators},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {809-818},
     zbl = {1183.41015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0055-y}
}
Vijay Gupta; Cristina Radu. Statistical approximation properties of q-Baskakov-Kantorovich operators. Open Mathematics, Tome 7 (2009) pp. 809-818. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0055-y/

[1] Abel U., Gupta V., An estimate of the rate of convergence of a Bezier variant of the Baskakov-Kantorovich operators for bounded variation functions, Demonstratio Math., 2003, 36, 123–136 | Zbl 1028.41016

[2] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13, 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4[WoS][Crossref] | Zbl 1179.41023

[3] Andrews G.E., Askey R., Roy R., Special functions, Cambridge Univ. Press., 1999 | Zbl 0920.33001

[4] Aral A., Gupta V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal., (in press), DOI: 10.1016/j.na.2009.07.052 [Crossref] | Zbl 1180.41012

[5] Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 1957, 113, 249–251 (in Russian) | Zbl 0080.05201

[6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo Serie II, 2005, 76, 269–290 | Zbl 1142.41002

[7] Doǧru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 2006, 68, 199–214 | Zbl 1097.41004

[8] Dogru O., Duman O., Orhan C., Statistical approximation by generalized Meyer-König and Zeller type operators, Studia Sci. Math. Hungar., 2003, 40, 359–371 | Zbl 1065.41040

[9] Dogru O., Gupta V., Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J., 2005, 12, 415–422 | Zbl 1092.41008

[10] Doǧru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo, 2006, 43, 51–63 http://dx.doi.org/10.1007/s10092-006-0114-8[Crossref] | Zbl 1121.41020

[11] Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Math., 2006, 161, 187–197 http://dx.doi.org/10.4064/sm161-2-6[Crossref] | Zbl 1049.41016

[12] Ernst T., The history of q-calculus and a new method, U.U.D.M. Report 2000, 16, Uppsala, Departament of Mathematics, Uppsala University, 2000

[13] Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 2008, 197, 172–178 http://dx.doi.org/10.1016/j.amc.2007.07.056[Crossref][WoS]

[14] Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002 | Zbl 0986.05001

[15] López-Moreno A.-J., Weighted silmultaneous approximation with Baskakov type operators, Acta Math. Hungar., 2004, 104, 143–151 http://dx.doi.org/10.1023/B:AMHU.0000034368.81211.23[Crossref] | Zbl 1091.41023

[16] Lorentz G.G., Bernstein polynomials, Math. Expo. Vol. 8, Univ. of Toronto Press, Toronto, 1953

[17] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 | Zbl 0881.41008

[18] Radu C., Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform., 2008, 17, 75–84 | Zbl 1199.41138

[19] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 | Zbl 1023.41022