Bernstein sets with algebraic properties
Marcin Kysiak
Open Mathematics, Tome 7 (2009), p. 725-731 / Harvested from The Polish Digital Mathematics Library

We construct Bernstein sets in ℝ having some additional algebraic properties. In particular, solving a problem of Kraszewski, Rałowski, Szczepaniak and Żeberski, we construct a Bernstein set which is a < c-covering and improve some other results of Rałowski, Szczepaniak and Żeberski on nonmeasurable sets.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269393
@article{bwmeta1.element.doi-10_2478_s11533-009-0053-0,
     author = {Marcin Kysiak},
     title = {Bernstein sets with algebraic properties},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {725-731},
     zbl = {1183.28001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0053-0}
}
Marcin Kysiak. Bernstein sets with algebraic properties. Open Mathematics, Tome 7 (2009) pp. 725-731. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0053-0/

[1] Carlson T.J., Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc., 1993, 118(2), 577–586 http://dx.doi.org/10.2307/2160341[Crossref] | Zbl 0787.03037

[2] Cichoń J., Jasiński A., Kamburelis A., Szczepaniak P., On translations of subsets of the real line, Fund. Math., 2002, 130(6), 1833–1842 | Zbl 0996.03031

[3] Cichoń J., Szczepaniak P., When is the unit ball nonmeasurable?, preprint available at http://www.im.pwr.wroc.pl/~cichon/prace/UnitBall.zip. | Zbl 1221.28001

[4] Kraszewski J., Rałowski R., Szczepaniak P., Żeberski Sz., Bernstein sets and κ-coverings, MLQ Math. Log. Q., in press, DOI: 10.1002/malq.200910008 [Crossref][WoS]

[5] Kysiak M., Nonmeasurable algebraic sums of sets of reals, Colloq. Math., 2005, 102(1), 113–122 http://dx.doi.org/10.4064/cm102-1-10[Crossref] | Zbl 1072.28002

[6] Muthuvel K., Application of covering sets, Colloq. Math., 1999, 80, 115–122 | Zbl 0931.26002

[7] Nowik A., Some topological characterizations of omega-covering sets, Czechoslovak Math. J., 2000, 50(125), 865–877 http://dx.doi.org/10.1023/A:1022476915100[Crossref] | Zbl 1079.03547

[8] Rałowski R., Szczepaniak P., Żeberski Sz., A generalization of Steinhaus theorem and some nonmeasurable sets, preprint available at http://www.im.pwr.wroc.pl/~zeberski/papers/raszze.pdf | Zbl 1225.03060