Unboundedness results for systems
Gabriel Lugo ; Frank Palladino
Open Mathematics, Tome 7 (2009), p. 741-756 / Harvested from The Polish Digital Mathematics Library

We study k th order systems of two rational difference equations xn=α+i=1kβixn-i+i=1kγiyn-iA+j=1kBjxn-j+j=1kCjyn-j,n, In particular we assume non-negative parameters and non-negative initial conditions. We develop several approaches which allow us to prove that unbounded solutions exist for certain initial conditions in a range of the parameters.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269268
@article{bwmeta1.element.doi-10_2478_s11533-009-0051-2,
     author = {Gabriel Lugo and Frank Palladino},
     title = {Unboundedness results for systems},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {741-756},
     zbl = {1185.39001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0051-2}
}
Gabriel Lugo; Frank Palladino. Unboundedness results for systems. Open Mathematics, Tome 7 (2009) pp. 741-756. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0051-2/

[1] Camouzis E., Kulenović M.R.S., Ladas G., Merino O., Rational systems in the plane, J. Difference Equa. Appl., 2009, 15, 303–323 http://dx.doi.org/10.1080/10236190802125264[Crossref] | Zbl 1169.39010

[2] Camouzis E., Ladas G., Global results on rational systems in the plane, Part 1, J. Difference Equa. Appl., to appear | Zbl 1218.39001

[3] Camouzis E., Ladas G., Palladino F., Quinn E.P., On the boundedness character of rational equations, Part 1, J. Difference Equa. Appl., 2006, 12, 503–523 http://dx.doi.org/10.1080/10236190500539311[Crossref][WoS] | Zbl 1104.39003

[4] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1, 91–100 | Zbl 1154.39012

[5] Palladino F.J., On periodic trichotomies, J. Difference Equa. Appl., 2009, 15, 605–620 http://dx.doi.org/10.1080/10236190802258677[Crossref] | Zbl 1207.39018