We study k th order systems of two rational difference equations In particular we assume non-negative parameters and non-negative initial conditions. We develop several approaches which allow us to prove that unbounded solutions exist for certain initial conditions in a range of the parameters.
@article{bwmeta1.element.doi-10_2478_s11533-009-0051-2, author = {Gabriel Lugo and Frank Palladino}, title = {Unboundedness results for systems}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {741-756}, zbl = {1185.39001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0051-2} }
Gabriel Lugo; Frank Palladino. Unboundedness results for systems. Open Mathematics, Tome 7 (2009) pp. 741-756. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0051-2/
[1] Camouzis E., Kulenović M.R.S., Ladas G., Merino O., Rational systems in the plane, J. Difference Equa. Appl., 2009, 15, 303–323 http://dx.doi.org/10.1080/10236190802125264[Crossref] | Zbl 1169.39010
[2] Camouzis E., Ladas G., Global results on rational systems in the plane, Part 1, J. Difference Equa. Appl., to appear | Zbl 1218.39001
[3] Camouzis E., Ladas G., Palladino F., Quinn E.P., On the boundedness character of rational equations, Part 1, J. Difference Equa. Appl., 2006, 12, 503–523 http://dx.doi.org/10.1080/10236190500539311[Crossref][WoS] | Zbl 1104.39003
[4] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1, 91–100 | Zbl 1154.39012
[5] Palladino F.J., On periodic trichotomies, J. Difference Equa. Appl., 2009, 15, 605–620 http://dx.doi.org/10.1080/10236190802258677[Crossref] | Zbl 1207.39018