In this article we look into characterizing primitive groups in the following way. Given a primitive group we single out a subset of its generators such that these generators alone (the so-called primitive generators) imply the group is primitive. The remaining generators ensure transitivity or comply with specific features of the group. We show that, other than the symmetric and alternating groups, there are infinitely many primitive groups with one primitive generator each. These primitive groups are certain Mathieu groups, certain projective general and projective special linear groups, and certain subgroups of some affine special linear groups.
@article{bwmeta1.element.doi-10_2478_s11533-009-0050-3, author = {Pedro Lopes}, title = {Permutations which make transitive groups primitive}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {650-659}, zbl = {1203.20001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0050-3} }
Pedro Lopes. Permutations which make transitive groups primitive. Open Mathematics, Tome 7 (2009) pp. 650-659. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0050-3/
[1] Alperin J.L., Bell R.B., Groups and representations, Graduate Texts in Mathematics, 162 Springer Verlag, 1995 | Zbl 0839.20001
[2] Artin E., The orders of the linear groups, Comm. Pure Appl. Math., 1955, 8, 355–365 http://dx.doi.org/10.1002/cpa.3160080302[Crossref] | Zbl 0065.01204
[3] Bedoya N., Revestimentos ramificados e o problema da decomponibilidade, PhD thesis, Universidade de São Paulo, São Paulo, Brazil, June, 2008 (in Portuguese)
[4] Cameron P.J., Permutation groups, London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999 | Zbl 0922.20003
[5] Conder M., Generating the Mathieu groups and associated Steiner systems, Discrete Math., 1993, 112(1–3), 41–47 http://dx.doi.org/10.1016/0012-365X(93)90222-F[Crossref]
[6] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, 3rd edition, Grundlehren der Mathematischen Wissenschaften, 290, Springer-Verlag, New York, 1999 | Zbl 0915.52003
[7] Dixon J.D., Mortimer B., Permutation groups, Graduate Texts in Mathematics, 163, Springer Verlag, 1996 | Zbl 0951.20001
[8] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10; 2007 (http://www.gap-system.org)
[9] Isaacs I.M., Zieschang T., Generating symmetric groups, Am. Math. Monthly, 1995, 102(8), 734–739 http://dx.doi.org/10.2307/2974644[Crossref] | Zbl 0846.20004
[10] Neumann P.M., Primitive permutation groups containing a cycle of prime-power length, Bull. London Math. Soc., 1975, 7, 298–299 http://dx.doi.org/10.1112/blms/7.3.298[Crossref] | Zbl 0319.20001
[11] Wielandt H., Finite permutation groups, Academic Press, New York-London, 1964 | Zbl 0138.02501
[12] Zieschang T., Primitive permutation groups containing a p-cycle, Arch. Math., 1995, 64, 471–474 http://dx.doi.org/10.1007/BF01195128[Crossref] | Zbl 0823.20001