The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.
@article{bwmeta1.element.doi-10_2478_s11533-009-0049-9, author = {Ravi Agarwal and Donal O'Regan and Svatoslav Stan\v ek}, title = {Positive and maximal positive solutions of singular mixed boundary value problem}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {694-716}, zbl = {1193.34039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0049-9} }
Ravi Agarwal; Donal O’Regan; Svatoslav Staněk. Positive and maximal positive solutions of singular mixed boundary value problem. Open Mathematics, Tome 7 (2009) pp. 694-716. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0049-9/
[1] Agarwal R.P., O’Regan D., Singular differential and integral equations with applications, Kluwer, Dordrecht, 2003
[2] Agarwal R.P., O’Regan D., Singular problems motivated from classical upper and lower solutions, Acta Math. Hungar., 2003, 100, 245–256 http://dx.doi.org/10.1023/A:1025045626822[Crossref]
[3] Agarwal R.P., O’Regan D., Staněek S., Existence of positive solutions for boundary-value problems with singularities in phase variables, Proc. Edinburgh Math. Soc., 2004, 47, 1–13 http://dx.doi.org/10.1017/S0013091503000105[Crossref]
[4] Agarwal R.P., Staněek S., Nonnegative solutions of singular boundary value problems with sign changing nonlinearities, Comput. Math. Appl., 2003, 46, 1827–1837 http://dx.doi.org/10.1016/S0898-1221(03)90239-2[Crossref] | Zbl 1156.34310
[5] Bartle R.G., A modern theory of integrations, AMS Providence, Rhode Island, 2001 | Zbl 0968.26001
[6] Berestycki H., Lions P.L., Peletier L.A., An ODE approach to the existence of positive solutions for semilinear problems in ℝN, Indiana Univ. Math. J., 1981, 30, 141–157 http://dx.doi.org/10.1512/iumj.1981.30.30012[Crossref]
[7] Bertsch M., Passo R.D., Ughi M., Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 1990, 320, 779–798 http://dx.doi.org/10.2307/2001703[Crossref] | Zbl 0714.35039
[8] Bertsch M., Ughi M., Positive properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal., 1990, 14, 571–592 http://dx.doi.org/10.1016/0362-546X(90)90063-M[Crossref]
[9] Cabada A., Cid J.A., Extremal solutions of ϕ-Laplacian-diffusion scalar problems with nonlinear functional boundary conditions in a unified way, Nonlinear. Anal., 2005, 63, 2515–2524 http://dx.doi.org/10.1016/j.na.2004.09.031[Crossref]
[10] Cabada A., Nieto J.J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput., 1990, 40, 135–145 http://dx.doi.org/10.1016/0096-3003(90)90128-P[Crossref]
[11] Cabada A., Pouso R.P., Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal., 2000, 42, 1377–1396 http://dx.doi.org/10.1016/S0362-546X(99)00158-3[Crossref] | Zbl 0964.34016
[12] Carl S., Heikkilä S., Nonlinear differential equations in ordered spaces, Chapman & Hall/CRC, Monographs and Surveys in Pure and Applied Mathematics III, 2000
[13] Castro A., Sudhasree G., Uniqueness of stable and unstable positive solutions for semipositone problems, Nonlinear Anal., 1994, 22, 425–429 http://dx.doi.org/10.1016/0362-546X(94)90166-X[Crossref] | Zbl 0804.35038
[14] Cherpion M., De Coster C., Habets P., Monotone iterative method for boundary value problem, Differential integral equations, 1999, 12, 309–338 | Zbl 1015.34009
[15] Cid J.A., On extremal fixed point in Schauder’s theorem with application to differential equations, Bull. Belg. Math. Soc. Simon Stevin, 2004, 11, 15–20 | Zbl 1076.47044
[16] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in ℝN, Adv. Math., Suppl. Stud. 7A, 1981, 369–402
[17] Kelevedjiev P., Nonnegative solutions to some singular second-order boundary value problems, Nonlinear Anal., 1999, 36, 481–494 http://dx.doi.org/10.1016/S0362-546X(98)00025-X[Crossref] | Zbl 0929.34022
[18] Kiguradze I., Some optimal conditions for solvability of two-point singular boundary value problems, Funct. Differ. Equ., 2003, 10, 259–281 | Zbl 1062.34017
[19] Kiguradze I.T., Shekhter B.L., Singular boundary value problems for second order ordinary differential equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 1987, 30, 105–201 (in Russian), English translation: Journal of Soviet Mathematics, 1988, 43, 2340–2417 | Zbl 0782.34026
[20] Lang S., Real and functional analysis, Springer, New York, 1993 | Zbl 0831.46001
[21] O’Regan D., Existence of positive solutions to some singular and nonsingular second order boundary value problems, J. Differential Equations, 1990, 84, 228–251 http://dx.doi.org/10.1016/0022-0396(90)90077-3[Crossref]
[22] Rachůnková I., Singular mixed boundary value problem, J. Math. Anal. Appl., 2006, 320, 611–618 http://dx.doi.org/10.1016/j.jmaa.2005.07.037[Crossref]
[23] Rachůnková I., Staněk S., Connections between types of singularities in differential equations and smoothness of solutions for Dirichlet BVPs, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 2003, 10, 209–222 | Zbl 1043.34022
[24] Rachůnková I., Staněk S., Tvrdý M., Singularities and laplacians in boundary value problems for nonlinear differential equations, In: Cañada A., Drábek P., Fonda A. (Eds.), Handbook of differential equations, Ordinary differential equations, Vol. 3, 607–723, Elsevier, 2006
[25] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions, Pacific J. Math., 1996, 172, 255–277 | Zbl 0855.34024
[26] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions II, Pacific J. Math., 1996, 172, 259–297 | Zbl 0862.34015
[27] Wang J., Gao W., A note on singular nonlinear two-point boundary value problems, Nonlinear Anal., 2000, 39, 281–287 http://dx.doi.org/10.1016/S0362-546X(98)00165-5[Crossref] | Zbl 0942.34018
[28] Zheng L., Su X., Zhang X., Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium, Int. J. Pure Appl. Math., 2005, 19, 541–552 | Zbl 1080.34008