Let (ℝ) stand for the hyperspace of all nonempty compact sets on the real line and let d ±(x;E) denote the (right- or left-hand) Lebesgue density of a measurable set E ⊂ ℝ at a point x∈ ℝ. In [3] it was proved that is ⊓11-complete. In this paper we define an abstract density operator ⅅ± and we generalize the above result. Some applications are included.
@article{bwmeta1.element.doi-10_2478_s11533-009-0048-x, author = {Szymon Glab}, title = {Descriptive set-theoretical properties of an abstract density operator}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {732-740}, zbl = {1185.28001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0048-x} }
Szymon Gła̧b. Descriptive set-theoretical properties of an abstract density operator. Open Mathematics, Tome 7 (2009) pp. 732-740. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0048-x/
[1] Bruckner A., Differentiation of real functions, Second edition, CRM Monograph Series 5, American Mathematical Society, Providence, RI, 1994 | Zbl 0796.26004
[2] Ciesielski K., Larson L., Ostaszewski K., I-density continuous functions, Mem. Amer. Math. Soc., 1994, 107(515) | Zbl 0801.26001
[3] Głąb Sz., Descriptive properties related to porosity and density for compact sets on the real line, Acta Math. Hungar., 2007, 116(1–2), 61–71 | Zbl 1136.28001
[4] Kechris A.S., On the concept of ⊓ 11-completeness, Proc. Amer. Math. Soc., 1997, 125(6), 1811–1814 http://dx.doi.org/10.1090/S0002-9939-97-03770-2 | Zbl 0864.03034
[5] Kechris A.S., Classical descriptive set theory, Springer, New York, 1998
[6] Kechris A.S., Louveau A., Descriptive set theory and harmonic analysis, J. Symbolic Logic, 1992, 57(2), 413–441 http://dx.doi.org/10.2307/2275277[Crossref] | Zbl 0766.03026
[7] Matheron E., Solecki S., Zelený M., Trichotomies for ideals of compact sets, J. Symbolic Logic, 2006, 71, 586–598 http://dx.doi.org/10.2178/jsl/1146620160[Crossref] | Zbl 1105.03040
[8] Matheron E., Zelený M., Descriptive set theory of families of small sets, Bull. Symbolic Logic, 2007, 13, 482–537 http://dx.doi.org/10.2178/bsl/1203350880[Crossref] | Zbl 1152.03042
[9] Pelant J., Zelený M., The structure of the σ-ideal of σ-porous sets, Comment. Math. Univ. Carolin., 2004, 45(1), 37–72 | Zbl 1101.28001
[10] Srivastava S.M., A course on Borel sets, Graduate Texts in Mathematics 180, Springer, New York, 1998 | Zbl 0903.28001
[11] Wilczyński W., A generalization of density topology, Real Anal. Exchange, 1982/83, 8, 16–20
[12] Zanyček L., Porosity and σ-porosity, Real Anal. Exchange, 1987/88, 13(2), 314–350
[13] Zanyček L., On σ-porous sets in abstract spaces, Abstr. Appl. Anal., 2005, 5, 509–534
[14] Zanyček L., Zelený M., On the complexity of some σ-ideals of σ-P-porous sets, Comment. Math. Univ. Carolin., 2003, 44(3), 531–554
[15] Zelený M., Descriptive properties of σ-porous sets, Real Anal. Exchange, 2004/05, 30(2), 657–674