It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.
@article{bwmeta1.element.doi-10_2478_s11533-009-0047-y, author = {Irina Krasikova and Miguel Mart\'\i n and Javier Mer\'\i\ and Vladimir Mykhaylyuk and Mikhail Popov}, title = {On order structure and operators in L $\infty$($\mu$)}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {683-693}, zbl = {1198.47051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0047-y} }
Irina Krasikova; Miguel Martín; Javier Merí; Vladimir Mykhaylyuk; Mikhail Popov. On order structure and operators in L ∞(μ). Open Mathematics, Tome 7 (2009) pp. 683-693. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0047-y/
[1] Albiac F., Kalton N., Topics in Banach Space Theory, Graduate Texts in Mathematics 233, Springer, New York, 2006 | Zbl 06566917
[2] Aliprantis CD., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006
[3] Benyamini Y., Lin P.-K., An operator on L p without best compact approximation, Israel J. Math., 1985, 51, 298–304 http://dx.doi.org/10.1007/BF02764722[Crossref] | Zbl 0596.47020
[4] Flores J., Ruiz C, Domination by positive narrow operators, Positivity, 2003, 7, 303–321 http://dx.doi.org/10.1023/A:1026211909760[Crossref] | Zbl 1051.47032
[5] Jech Th., Set Theory, Springer, Berlin, 2003
[6] Kadets V, Martín M., Merí J., Shepelska V, Lushness, numerical index one and duality, J. Math. Anal. Appl., 2009, 357, 15–24 http://dx.doi.org/10.1016/j.jmaa.2009.03.055[Crossref] | Zbl 1183.46009
[7] Kadets V.M., Popov M.M., On the Liapunov convexity theorem with applications to sign-embeddings, Ukr. Mat. Zh., 1992, 44(9), 1192–1200 http://dx.doi.org/10.1007/BF01058369[Crossref] | Zbl 0779.46039
[8] Kadets V.M., Popov M.M., The Daugavet property for narrow operators in rich subspaces of the spaces C[0,1] and L 1[0,1], Algebra i Analiz, 1996, 8, 43–62 (in Russian), English translation: St. Petersburg Math. J., 1997, 8, 571–584 | Zbl 0881.47017
[9] Krasikova I.V., A note on narrow operators in L ∞, Math. Stud., 2009, 31(1), 102–106 | Zbl 1199.47153
[10] Lindenstrauss J., Pełczyński A., Absolutely summing operators in ℒp-spaces and their applications, Studia Math, 1968, 29, 275–326 | Zbl 0183.40501
[11] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. 1, Sequence spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977 | Zbl 0362.46013
[12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. 2, Function spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979 | Zbl 0403.46022
[13] Maslyuchenko O.V, Mykhaylyuk V.V., Popov M.M., A lattice approach to narrow operators, Positivity, 2009, 13, 459–495 http://dx.doi.org/10.1007/s11117-008-2193-z[Crossref] | Zbl 1183.47033
[14] Plichko A.M., Popov M.M., Symmetric function spaces on atomless probability spaces, Dissertationes Math., 1990, 306, 1–85