A formula for the mean value of multiplicative functions associated to certain cusp forms is obtained. The paper is a continuation of [4].
@article{bwmeta1.element.doi-10_2478_s11533-009-0044-1, author = {Antanas Laurin\v cikas and Joern Steuding and Darius \v Siau\v ci\=unas}, title = {On zeta-functions associated to certain cusp forms. II}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {635-649}, zbl = {1268.11067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0044-1} }
Antanas Laurinčikas; Joern Steuding; Darius Šiaučiūnas. On zeta-functions associated to certain cusp forms. II. Open Mathematics, Tome 7 (2009) pp. 635-649. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0044-1/
[1] Deligne P., La conjecture de Weil, Inst. Hautes Études Sci. Publ. Math., 1974, 43, 273–307 http://dx.doi.org/10.1007/BF02684373[Crossref]
[2] Heath-Brown D.R., Fractional moments of the Riemann zeta-function, J. London Math. Soc., 1981, 24(2), 65–78 http://dx.doi.org/10.1112/jlms/s2-24.1.65[Crossref] | Zbl 0431.10024
[3] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, Boston, London, 1996 | Zbl 0859.11053
[4] Laurinčikas A., Steuding J., On zeta-functions associated to certain cusp forms. I, Centr. Eur. J. Math., 2004, 2(1), 1–18 http://dx.doi.org/10.2478/BF02475947[Crossref] | Zbl 1038.11031
[5] Laurinčikas A., Steuding J., On fractional power moments of zeta-functions associated with certain cusp forms, Acta Appl. Math., 2007, 97(1–3), 25–39 http://dx.doi.org/10.1007/s10440-007-9138-6[Crossref][WoS] | Zbl 1175.11049
[6] Rankin R.A., Ramanujan’s tau-function and its generalizations, Ramanujan revisited (Urbana-Champaign, Ill. 1987), Academic Press, Boston, 1988, 245–268