Feedback Nash equilibria in optimal taxation problems
Mikhail Krastanov ; Rossen Rozenov
Open Mathematics, Tome 7 (2009), p. 757-774 / Harvested from The Polish Digital Mathematics Library

A well-known result in public economics is that capital income should not be taxed in the long run. This result has been derived using necessary optimality conditions for an appropriate dynamic Stackelberg game. In this paper we consider three models of dynamic taxation in continuous time and suggest a method for calculating their feedback Nash equilibria based on a sufficient condition for optimality. We show that the optimal tax on capital income is generally different from zero.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269277
@article{bwmeta1.element.doi-10_2478_s11533-009-0040-5,
     author = {Mikhail Krastanov and Rossen Rozenov},
     title = {Feedback Nash equilibria in optimal taxation problems},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {757-774},
     zbl = {1183.91020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0040-5}
}
Mikhail Krastanov; Rossen Rozenov. Feedback Nash equilibria in optimal taxation problems. Open Mathematics, Tome 7 (2009) pp. 757-774. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0040-5/

[1] Basar T., Olsder G.J., Dynamic noncooperative game theory, SIAM, 1999 | Zbl 0946.91001

[2] Chamley C., Optimal taxation of capital income in general equilibrium with infinite lives, Econometrica, 1986, 54(3), 607–622 http://dx.doi.org/10.2307/1911310[Crossref] | Zbl 0601.90022

[3] Cohen D., Michel P., How should control theory be used to calculate a time-consistent government policy?, Review of Economic Studies, 1988, 55(2), 263–274 http://dx.doi.org/10.2307/2297581[Crossref] | Zbl 0657.90021

[4] Dockner E., Jorgensen S., Van Long N., Sorger G., Differential games in economics and management science, Cambridge University Press, 2000 | Zbl 0996.91001

[5] Frankel D., Transitional dynamics of optimal capital taxation, Macroeconomic Dynamics, 1998, 2, 492–503 http://dx.doi.org/10.1017/S1365100598009055[Crossref] | Zbl 0920.90046

[6] Judd D., Redistributive taxation in a simple perfect foresight model, Journal of Public Economics, 1985, 28, 59–83 http://dx.doi.org/10.1016/0047-2727(85)90020-9[Crossref]

[7] Kemp L., van Long N., Shimomura K., Cyclical and noncyclical redistributive taxation, International Economic Review, 1993, 34(2), 415–429 http://dx.doi.org/10.2307/2526922[Crossref] | Zbl 0789.90029

[8] Krastanov M., Rozenov R., On Chamley’s problem of optimal taxation, Proceedings of the 37th Spring Conference of the Union of Bulgarian Mathematicians, 2008, 216–220

[9] Lansing K., Optimal redistributive capital taxation in a neoclassical growth model, Journal of Public Economics, 1999, 73, 423–453 http://dx.doi.org/10.1016/S0047-2727(99)00016-X[Crossref]

[10] Rubio S.J., On coincidence of feedback Nash equilibria and Stackelberg equilibria in economic applications of differential games, Journal of Optimization Theory and Applications, 2006, 128(1), 203–221 http://dx.doi.org/10.1007/s10957-005-7565-y[Crossref] | Zbl 1118.91023

[11] Seierstad A., Sydsaeter K., Sufficient conditions in optimal control theory, International Economic Review, 1977, 18(2), 367–391 http://dx.doi.org/10.2307/2525753[Crossref] | Zbl 0392.49010

[12] Xie D., On time inconsistency: a technical issue in Stackelberg differential games, Journal of Economic Theory, 1997, 76(2), 412–430 http://dx.doi.org/10.1006/jeth.1997.2308[Crossref]