Smoothing of rational m-ropes
Edoardo Ballico ; Elizabeth Gasparim ; Thomas Köppe
Open Mathematics, Tome 7 (2009), p. 623-628 / Harvested from The Polish Digital Mathematics Library

In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269488
@article{bwmeta1.element.doi-10_2478_s11533-009-0039-y,
     author = {Edoardo Ballico and Elizabeth Gasparim and Thomas K\"oppe},
     title = {Smoothing of rational m-ropes},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {623-628},
     zbl = {1184.14005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0039-y}
}
Edoardo Ballico; Elizabeth Gasparim; Thomas Köppe. Smoothing of rational m-ropes. Open Mathematics, Tome 7 (2009) pp. 623-628. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0039-y/

[1] Arbarello E., Cornalba M., Su una congettura di Petri, Comm. Math. Helv., 1981, 56, 1–38 http://dx.doi.org/10.1007/BF02566195[Crossref]

[2] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of algebraic curves I, Springer, Berlin, 1985 | Zbl 0559.14017

[3] Ballico E., A remark on linear series of general k-gonal curves, Boll. Unione Mat. Ital. (7), 1989, 3-A, 195–197 | Zbl 0702.14026

[4] Ballico E., Scrollar invariants of smooth projective curves, J. Pure Appl. Algebra, 2003, 166(3), 239–246 http://dx.doi.org/10.1016/S0022-4049(01)00023-8[Crossref] | Zbl 1059.14501

[5] Bayer D., Eisenbud D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc, 1995, 347(3), 719–756 http://dx.doi.org/10.2307/2154871[Crossref] | Zbl 0853.14016

[6] Chandler K.A., Geometry of dots and ropes, Trans. Amer. Math. Soc, 1995, 347(3), 767–784 http://dx.doi.org/10.2307/2154873[Crossref] | Zbl 0830.14020

[7] Coppens M., Martens G., Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg, 1999, 69, 347–371 http://dx.doi.org/10.1007/BF02940885[Crossref] | Zbl 0957.14018

[8] Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann., 1981, 256(4), 453–463 http://dx.doi.org/10.1007/BF01450541[Crossref] | Zbl 0443.14015

[9] Gallego F.J., González M., Purnaprajna B.P., Deformation of finite morphisms and smoothing of ropes, Compos. Math., 2008, 144(3), 673–688 http://dx.doi.org/10.1112/S0010437X07003326[WoS][Crossref] | Zbl 1146.14017

[10] González M., Smoothing of ribbons over curves, J. Reine Angew. Math., 2006, 591, 201–213 | Zbl 1094.14016

[11] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88(3), 402–450 http://dx.doi.org/10.2307/1970720[Crossref] | Zbl 0169.23302

[12] Mumford D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Oxford University Press, London 1970 | Zbl 0223.14022

[13] Sacchiero G., Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 1980, 26, 33–40

[14] Schreyer F.-O., Syzygies of canonical curves and special linear series, Math. Ann., 1986, 275(1), 105–137 http://dx.doi.org/10.1007/BF01458587[Crossref] | Zbl 0578.14002