Approximating real Pochhammer products: a comparison with powers
Vito Lampret
Open Mathematics, Tome 7 (2009), p. 493-505 / Harvested from The Polish Digital Mathematics Library

Accurate estimates of real Pochhammer products, lower (falling) and upper (rising), are presented. Double inequalities comparing the Pochhammer products with powers are given. Several examples showing how to use the established approximations are stated.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269436
@article{bwmeta1.element.doi-10_2478_s11533-009-0036-1,
     author = {Vito Lampret},
     title = {Approximating real Pochhammer products: a comparison with powers},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {493-505},
     zbl = {1179.41034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0036-1}
}
Vito Lampret. Approximating real Pochhammer products: a comparison with powers. Open Mathematics, Tome 7 (2009) pp. 493-505. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0036-1/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, Dover Publications, N.Y., 1974 | Zbl 0171.38503

[2] Atkinson K.E., An introduction to numerical analysis, J. Wiley & Sons, N.Y., 1989 | Zbl 0718.65001

[3] Davis P.J., Rabinowitz P., Methods of numerical integration, Academic Press, Chestnut Hill, MA., 1984 | Zbl 0537.65020

[4] Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 2007, 15, 179–192 | Zbl 1163.33300

[5] Graham R.L., Knuth D.E., Patashnik O., Concrete mathematics, Addison-Wesley, Reading, MA, 1994 | Zbl 0836.00001

[6] Kahn P.B., Mathematical methods for scientists and engineers, John Wiley & Sons, N.Y., 1990. | Zbl 0925.00008

[7] Knopp K., Theory and applications of infinite series, Hafner, N.Y., 1971

[8] Lampret V., The Euler-Maclaurin and Taylor formulas: Twin, elementary derivations, Math. Mag., 2001, 74, 109–122 | Zbl 1018.41020

[9] Lampret V., An invitation to Hermite’s integration and summation: A Comparison between Hermite’s and Simpson’s rules, SIAM Rev., 2004, 46, 311–328 http://dx.doi.org/10.1137/S0036144502416308 | Zbl 1065.41051

[10] Spivey M.Z., The Euler-Maclaurin formula and sums of powers, Math. Mag., 2006, 79, 61–65 http://dx.doi.org/10.2307/27642905 | Zbl 1151.11308

[11] Wolfram S., Mathematica, Version 6.0, Wolfram Research, Inc., 1988–2008