Representation and duality for Hilbert algebras
Sergio Celani ; Leonardo Cabrer ; Daniela Montangie
Open Mathematics, Tome 7 (2009), p. 463-478 / Harvested from The Polish Digital Mathematics Library

In this paper we introduce a special kind of ordered topological spaces, called Hilbert spaces. We prove that the category of Hilbert algebras with semi-homomorphisms is dually equivalent to the category of Hilbert spaces with certain relations. We restrict this result to give a duality for the category of Hilbert algebras with homomorphisms. We apply these results to prove that the lattice of the deductive systems of a Hilbert algebra and the lattice of open subsets of its dual Hilbert space, are isomorphic. We explore how this duality is related to the duality given in [6] for finite Hilbert algebras, and with the topological duality developed in [7] for Tarski algebras.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269367
@article{bwmeta1.element.doi-10_2478_s11533-009-0032-5,
     author = {Sergio Celani and Leonardo Cabrer and Daniela Montangie},
     title = {Representation and duality for Hilbert algebras},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {463-478},
     zbl = {1184.03064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0032-5}
}
Sergio Celani; Leonardo Cabrer; Daniela Montangie. Representation and duality for Hilbert algebras. Open Mathematics, Tome 7 (2009) pp. 463-478. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0032-5/

[1] Balbes R., Dwinger Ph., Distributive lattices, University of Missouri Press, 1974 | Zbl 0321.06012

[2] Busneag D., A note on deductive systems of a Hilbert algebra, Kobe J. Math., 1985, 2, 29–35 | Zbl 0584.06005

[3] Celani S.A., A note on homomorphism of Hilbert algebras, Int. J. Math. Math. Sci., 2002, 29(1), 55–61 http://dx.doi.org/10.1155/S0161171202011134 | Zbl 0993.03089

[4] Celani S.A., Representation of Hilbert algebras and implicative Semilattices, Cent. Eur. J. Math., 2003, 1(4), 561–572 http://dx.doi.org/10.2478/BF02475182 | Zbl 1034.03056

[5] Celani S.A., Modal Tarski algebras, Reports on Mathematical Logic, 2005, 39, 113–126 | Zbl 1105.03069

[6] Celani S.A., Cabrer L.M., Duality for finite Hilbert algebras, Discrete Math., 2005, 305, 74–99 http://dx.doi.org/10.1016/j.disc.2005.09.002 | Zbl 1084.03050

[7] Celani S.A., Cabrer L.M., Topological duality for Tarski algebras, Algebra Universalis, 2008, 58, 73–94 http://dx.doi.org/10.1007/s00012-007-2041-1 | Zbl 1136.03046

[8] Chajda I., Halaš P., Zedník J., Filters and annihilators in implication algebras, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica, 1998, 37, 41–45 | Zbl 0967.03059

[9] Diego A., Sur les algèbres de Hilbert, Hermann, Paris, Collection de Logique Mathématique, Sér. A, 1966, 21 (in French) | Zbl 0144.00105

[10] Koppelberg S., General theory of Boolean algebras, In: Monk D., Bonnet R. (Eds.), Handbook of Boolean Algebras, Vol. 1, North Holland, Amsterdam, 1989 | Zbl 0676.06019