The incidence class and the hierarchy of orbits
László Fehér ; Zsolt Patakfalvi
Open Mathematics, Tome 7 (2009), p. 429-441 / Harvested from The Polish Digital Mathematics Library

R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂ η¯ . Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂ η¯ for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity holds for all orbits. In other words in these cases the incidence classes completely determine the hierarchy of the orbits. We also study the case of singularities where positivity doesn’t hold for all orbits.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269032
@article{bwmeta1.element.doi-10_2478_s11533-009-0026-3,
     author = {L\'aszl\'o Feh\'er and Zsolt Patakfalvi},
     title = {The incidence class and the hierarchy of orbits},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {429-441},
     zbl = {1184.32008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0026-3}
}
László Fehér; Zsolt Patakfalvi. The incidence class and the hierarchy of orbits. Open Mathematics, Tome 7 (2009) pp. 429-441. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0026-3/

[1] Arnol’d V.I., Guseĭn-Zade S.M., Varchenko A.N., Singularities of differentiable maps II, Monographs in Mathematics, Birkhauser Boston Inc., Boston, MA, 1988

[2] Buch A.S., Rimanyi R., Specializations of Grothendieck polynomials, C. R. Math. Acad. Sci. Paris, 2004, 339(1), 1–4 | Zbl 1051.14062

[3] Edidin D., Graham W., Equivariant intersection theory, Invent. Math., 1998, 131(3), 595–634 http://dx.doi.org/10.1007/s002220050214 | Zbl 0940.14003

[4] Fehér L.M., Némethi A., Rimányi R., The degree of the discriminant of irreducible representations, J. Algebraic Geometry, 2008, 17, 751–780 | Zbl 1155.20045

[5] Fehér L., Rimányi R., Classes of degeneracy loci for quivers: the Thom polynomial point of view, Duke Math. J., 2002, 114(2), 193–213 http://dx.doi.org/10.1215/S0012-7094-02-11421-5 | Zbl 1054.14010

[6] Fehér L.M., Rimányi R., Thom polynomials with integer coefficients, Illinois J. Math., 2002, 46(4), 1145–1158 | Zbl 1029.57028

[7] Fehér L.M., Rimányi R., Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces, Cent. Eur. J. Math., 2003, 1(4), 418–434 http://dx.doi.org/10.2478/BF02475176 | Zbl 1038.57008

[8] Fehér L.M., Rimányi R., Calculation of Thom polynomials and other cohomological obstructions for group actions, In: Real and complex singularities, Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, 354, 69–93 | Zbl 1074.32008

[9] Fulton W., Young tableaux, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997

[10] Goldin R.F., The cohomology ring of weight varieties and polygon spaces, Adv. in Math., 2001, 160, 175–204 http://dx.doi.org/10.1006/aima.2001.1984 | Zbl 1117.14051

[11] Kazarian M.É., Characteristic classes of singularity theory, In: The Arnold-Gelfand mathematical seminars, pages, Birkhäuser Boston, Boston, MA, 1997, 325–340 | Zbl 0872.57034

[12] Knutson A., Miller E., Gröbner geometry of Schubert polynomials, Annals of Math., 2005, 2(3), 1245–1318 http://dx.doi.org/10.4007/annals.2005.161.1245 | Zbl 1089.14007

[13] Knutson A., Miller E., Shimozono M., Four positive formulae for type a quiver polynomials, Invent. Math., 2006, 166, 229–325 http://dx.doi.org/10.1007/s00222-006-0505-0 | Zbl 1107.14046

[14] Knutson A., Shimozono M., Kempf collapsing and quiver loci, preprint available at http://arxiv.org/abs/math/0608327

[15] Kumar S., The nil hecke ring and singularity of Schubert varieties, Invent. Math., 1996, 123(3), 471–506 http://dx.doi.org/10.1007/s002220050038 | Zbl 0863.14031

[16] Lascoux A., Schützenberger M.-P., Décompositions dans l’algébre des differences divisées, Discrete Math., 1992, 99, 165–179 http://dx.doi.org/10.1016/0012-365X(92)90372-M

[17] Mather J., Stability of C ∞ mappings. VI. the nice dimensions, In: Liverpool Singularities-Symposium I, number 192 in SLNM, 1971, 207–253

[18] Miller E., Sturmfels B., Combinatorial commutative algebra, Springer, Berlin, 2004 | Zbl 1090.13001

[19] Patakfalvi Z., Orbit structures and incidence, Master’s thesis, Eotvos University, Budapest, 2006

[20] Porteous I., Simple singularities of maps, In: Liverpool Singularities-Symposium I, number 192 in SLNM, 1971, 286–307

[21] Rimányi R., Generalized Pontrjagin-Thom construction for singular maps, PhD thesis, Eotvos University, Budapest, 1999

[22] Rimányi R., Thom polynomials, symmetries and incidences of singularities, Invent. Math., 2001, 143(3), 499–521 http://dx.doi.org/10.1007/s002220000113 | Zbl 0985.32012

[23] Wall C.T.C., Nets of conics, Math. Proc. Cambridge Philos. Soc., 1977, 81(3), 351–364 http://dx.doi.org/10.1017/S0305004100053421