We consider the existence or otherwise of canonical divisible normal subgroups of groups in general. We present more counterexamples than positive results. These counterexamples constitute the substantive part of this paper.
@article{bwmeta1.element.doi-10_2478_s11533-009-0022-7, author = {B.A.F. Wehrfritz}, title = {The divisible radical of a group}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {387-394}, zbl = {1200.20025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0022-7} }
B.A.F. Wehrfritz. The divisible radical of a group. Open Mathematics, Tome 7 (2009) pp. 387-394. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0022-7/
[1] Fuchs L., Infinite Abelian Groups Vol. 1, Academic Press, New York, 1970 | Zbl 0209.05503
[2] Hall P., Nilpotent Groups, Queen Mary College Math. Notes, London, 1969
[3] Jacobson N., The Theory of Fields, Van Nostrand, New York, 1964 | Zbl 0124.27002
[4] Robinson D.J.S., Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, Berlin, 1972 | Zbl 0243.20032
[5] Wehrfritz B.A.F., On hypercentral groups, Cent. Eur. J. Math., 2007, 5, 596–606 http://dx.doi.org/10.2478/s11533-007-0015-3 | Zbl 1133.20021
[6] Wehrfritz B.A.F., The abelianization of hypercyclic groups, Cent. Eur. J. Math., 2007, 5, 686–695 http://dx.doi.org/10.2478/s11533-007-0030-4 | Zbl 1147.20029
[7] Wehrfritz B.A.F., On hyper (abelian of finite rank) groups, Algebra Colloq., 2008, 15, 361–370 | Zbl 1153.20032
[8] Wehrfritz B.A.F., On hyper and hypo abelian-of-finite-rank groups, Asian-Europ. J. Math., 2008, 1, 431–438 http://dx.doi.org/10.1142/S1793557108000369 | Zbl 1173.20026