The divisible radical of a group
B.A.F. Wehrfritz
Open Mathematics, Tome 7 (2009), p. 387-394 / Harvested from The Polish Digital Mathematics Library

We consider the existence or otherwise of canonical divisible normal subgroups of groups in general. We present more counterexamples than positive results. These counterexamples constitute the substantive part of this paper.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269492
@article{bwmeta1.element.doi-10_2478_s11533-009-0022-7,
     author = {B.A.F. Wehrfritz},
     title = {The divisible radical of a group},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {387-394},
     zbl = {1200.20025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0022-7}
}
B.A.F. Wehrfritz. The divisible radical of a group. Open Mathematics, Tome 7 (2009) pp. 387-394. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0022-7/

[1] Fuchs L., Infinite Abelian Groups Vol. 1, Academic Press, New York, 1970 | Zbl 0209.05503

[2] Hall P., Nilpotent Groups, Queen Mary College Math. Notes, London, 1969

[3] Jacobson N., The Theory of Fields, Van Nostrand, New York, 1964 | Zbl 0124.27002

[4] Robinson D.J.S., Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, Berlin, 1972 | Zbl 0243.20032

[5] Wehrfritz B.A.F., On hypercentral groups, Cent. Eur. J. Math., 2007, 5, 596–606 http://dx.doi.org/10.2478/s11533-007-0015-3 | Zbl 1133.20021

[6] Wehrfritz B.A.F., The abelianization of hypercyclic groups, Cent. Eur. J. Math., 2007, 5, 686–695 http://dx.doi.org/10.2478/s11533-007-0030-4 | Zbl 1147.20029

[7] Wehrfritz B.A.F., On hyper (abelian of finite rank) groups, Algebra Colloq., 2008, 15, 361–370 | Zbl 1153.20032

[8] Wehrfritz B.A.F., On hyper and hypo abelian-of-finite-rank groups, Asian-Europ. J. Math., 2008, 1, 431–438 http://dx.doi.org/10.1142/S1793557108000369 | Zbl 1173.20026