Submanifolds with parallel mean curvature vector play important roles in differential geometry, theory of harmonic maps as well as in physics. Spatial surfaces in 4D Lorentzian space forms with parallel mean curvature vector were classified by B. Y. Chen and J. Van der Veken in [9]. Recently, spatial surfaces with parallel mean curvature vector in arbitrary pseudo-Euclidean spaces are also classified in [7]. In this article, we classify spatial surfaces with parallel mean curvature vector in pseudo-Riemannian spheres and pseudo-hyperbolic spaces with arbitrary codimension and arbitrary index. Consequently, we achieve the complete classification of spatial surfaces with parallel mean curvature vector in all pseudo-Riemannian space forms. As an immediate by-product, we obtain the complete classifications of spatial surfaces with parallel mean curvature vector in arbitrary Lorentzian space forms.
@article{bwmeta1.element.doi-10_2478_s11533-009-0020-9, author = {Bang-Yen Chen}, title = {Complete classification of spatial surfaces with parallel mean curvature vector in arbitrary non-flat pseudo-Riemannian space forms}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {400-428}, zbl = {1183.53050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0020-9} }
Bang-Yen Chen. Complete classification of spatial surfaces with parallel mean curvature vector in arbitrary non-flat pseudo-Riemannian space forms. Open Mathematics, Tome 7 (2009) pp. 400-428. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0020-9/
[1] Chen B.Y., Geometry of submanifolds, M. Dekker, New York, 1973
[2] Chen B.Y., On the surface with parallel mean curvature vector, Indiana Univ. Math. J., 1973, 22, 655–666 http://dx.doi.org/10.1512/iumj.1973.22.22053 | Zbl 0252.53021
[3] Chen B.Y., Total mean curvature and submanifolds of finite type, World Scientific, New Jersey, 1984 | Zbl 0537.53049
[4] Chen B.Y., Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J., 1985, 8, 358–374 http://dx.doi.org/10.2996/kmj/1138037104 | Zbl 0586.53022
[5] Chen B.Y., Riemannian submanifolds, Handbook of differential geometry, Vol. I, 187–418, North-Holland, Amsterdam, 2000
[6] Chen B.Y., Marginally trapped surfaces and Kaluza-Klein theory, Intern. Elect. J. Geom., 2009, 2, 1–16 | Zbl 1207.83003
[7] Chen B.Y., Classification of spatial surfaces with parallel mean curvature vector in pseudo-Euclidean spaces of arbitrary dimension, J. Math. Phys., 2009, 50, 043503, 14 pages http://dx.doi.org/10.1063/1.3100755 | Zbl 1214.53021
[8] Chen B.Y., Van der Veken J., Spatial and Lorentzian surfaces in Robertson-Walker space-times, J. Math. Phys., 2007, 48, 073509, 12 pages http://dx.doi.org/10.1063/1.2748616 | Zbl 1144.81324
[9] Chen B.Y., Van der Veken J., Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms, Tohoku Math. J., 2009, 61, 1–40 http://dx.doi.org/10.2748/tmj/1238764545 | Zbl 1182.53018
[10] Hawking S.W., Penrose R., The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. London Ser. A, 1970, 314, 529–548 http://dx.doi.org/10.1098/rspa.1970.0021 | Zbl 0954.83012
[11] Magid M.A., Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math., 1984, 8, 31–54 | Zbl 0549.53052
[12] O’Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1982
[13] Penrose R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 1965, 14, 57–59 http://dx.doi.org/10.1103/PhysRevLett.14.57 | Zbl 0125.21206
[14] Takahashi T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 1966, 18, 380–385 http://dx.doi.org/10.2969/jmsj/01840380 | Zbl 0145.18601
[15] Yau S.T., Submanifolds with constant mean curvature I, Amer. J. Math., 1974, 96, 346–366 http://dx.doi.org/10.2307/2373638 | Zbl 0304.53041
[16] Verstraelen L., Pieters M., Some immersions of Lorentz surfaces into a pseudo-Riemannian space of constant curvature and of signature (2; 2), Rev. Roumaine Math. Pures Appl., 1976, 21, 593–600 | Zbl 0333.53017