In this paper we prove two fixed point theorems for generalized contractions with constants in complete metric space, which are generalizations of very recent results of Kikkawa and Suzuki.
@article{bwmeta1.element.doi-10_2478_s11533-009-0019-2, author = {Ovidiu Popescu}, title = {Two fixed point theorems for generalized contractions with constants in complete metric space}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {529-538}, zbl = {1178.54024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0019-2} }
Ovidiu Popescu. Two fixed point theorems for generalized contractions with constants in complete metric space. Open Mathematics, Tome 7 (2009) pp. 529-538. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0019-2/
[1] Banach S., Sur les óperations dans les ensembles abstraits et leur aplication aux écuations intégrales, Fund. Math., 1922, 3, 133–181 (in French) | Zbl 48.0201.01
[2] Chatterjea S. K., Fixed point theorems, Comptes rendus de l’Académie Bulgare des Sciences, 1972, 25, 727–730 | Zbl 0274.54033
[3] Ćirić Lj. B., Generalized contractions and fixed point theorem, Publ. Inst. Math., 1971, 12, 19–26 | Zbl 0234.54029
[4] Kannan R., Some results on fixed points, Bull. Calcutta Math. Soc., 1968, 60, 71–76 | Zbl 0209.27104
[5] Kikkawa M., Suzuki T., Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Analysis, 69, 2008, 2942–2949 http://dx.doi.org/10.1016/j.na.2007.08.064 | Zbl 1152.54358
[6] Kikkawa M., Suzuki T., Some similarity between contractions and Kannan mappings, Fixed Point Theory and Applications, 2008, ID649749, 8 pages | Zbl 1162.54019
[7] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6
[8] Popescu O., Fixed point theorems in metric spaces, Bull. of Transilvania Univ., 2008, 50, 479–482 | Zbl 1299.54109
[9] Suzuki T., A generalized Banach contraction principle which characterizes metric completness, Proc. Amer. Math. Soc., 2008, 136, 1861–1869 http://dx.doi.org/10.1090/S0002-9939-07-09055-7 | Zbl 1145.54026
[10] Suzuki T., Kikkawa M., Some remarks on a recent generalization of the Banach contraction principle, Proceedings of the Eighth International Conference on Fixed Point Theory and its Applications, Yokohama Publishers, 2008, 151–161 | Zbl 1187.54043
[11] Zamfirescu T., Fixed point theorems in metric spaces, Arch. Math., 1972, 23, 292–298 http://dx.doi.org/10.1007/BF01304884 | Zbl 0239.54030