Optimal time and space regularity for solutions of degenerate differential equations
Alberto Favaron
Open Mathematics, Tome 7 (2009), p. 249-271 / Harvested from The Polish Digital Mathematics Library

We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269425
@article{bwmeta1.element.doi-10_2478_s11533-009-0018-3,
     author = {Alberto Favaron},
     title = {Optimal time and space regularity for solutions of degenerate differential equations},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {249-271},
     zbl = {1181.35031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0018-3}
}
Alberto Favaron. Optimal time and space regularity for solutions of degenerate differential equations. Open Mathematics, Tome 7 (2009) pp. 249-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0018-3/

[1] Cross R., Multivaluedlinearoperators, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1998

[2] Favaron A., Lorenzi A., Gradient estimates for solutions of parabolic differential equations degenerating at infinity, Adv. Differential Equations, 2007, 12, 435–460 | Zbl 1152.35013

[3] Favini A., Lorenzi A., Tanabe H., Singular integro-differential equations of parabolic type, Adv. Differential Equations, 2002, 7, 769–798 | Zbl 1033.45010

[4] Favini A., Lorenzi A., Tanabe H., Yagi A., An L p-approach to singular linear parabolic equations in bounded domains, Osaka J. Math., 2005, 42, 385–406 | Zbl 1082.35073

[5] Favini A., Yagi A., Space and time regularity for degenerate evolution equations, J. Math. Soc. Japan, 1992, 44, 331–350 http://dx.doi.org/10.2969/jmsj/04420331[Crossref] | Zbl 0758.35048

[6] Favini A., Yagi A., Mulltivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl. (4), 1993, 163, 353–384 http://dx.doi.org/10.1007/BF01759029[Crossref] | Zbl 0786.47037

[7] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1999 | Zbl 0913.34001

[8] Favini A., Yagi A., Quasilinear degenerate evolution equations in Banach spaces, J. Evol. Equ., 2004, 4, 421–449 http://dx.doi.org/10.1007/s00028-004-0169-4[Crossref] | Zbl 1072.35104

[9] Hille E., Phillips R.S., Functional analysis and semi-groups (revised edition), American Mathematical Society, Providence, R.I., 1957 | Zbl 0078.10004

[10] Lorenzi A., Tanabe H., Inverse and direct problems for nonautonomous degenerate integrodifferential equations of parabolic type with Dirichlet boundary conditions, Lect. Notes Pure Appl. Math., 2006, 251, 197–243 http://dx.doi.org/10.1201/9781420011135.ch12[Crossref] | Zbl 1106.45302

[11] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Verlag, Basel, 1995 | Zbl 0816.35001

[12] Mel’nikova I.V., The Cauchy problem for an inclusion in Banach spaces and distribution spaces, Sib. Math. J., 2001, 42, 751–765 http://dx.doi.org/10.1023/A:1010453716613[Crossref]

[13] Periago F., Global existence, uniqueness, and continuous dependence for a semilinear initial value problem, J. Math. Anal. Appl., 2003, 280, 413–423 http://dx.doi.org/10.1016/S0022-247X(03)00126-4[Crossref] | Zbl 1029.34048

[14] Sinestrari E., On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 1985, 107, 16–66 http://dx.doi.org/10.1016/0022-247X(85)90353-1[Crossref]

[15] Taira K., On a degenerate oblique derivative problem with interior boundary conditions, Proc. Japan Acad., 1976, 52, 484–487 http://dx.doi.org/10.3792/pja/1195518211[Crossref] | Zbl 0371.35010

[16] Taira K., The theory of semigroups with weak singularity and its application to partial differential equations, Tsukuba J. Math., 1989, 13, 513–562 | Zbl 0695.47031

[17] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland Publishing Co., Amsterdam-New York, 1978

[18] von Wahl W., Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Raümen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1972, 231–258 (inGerman) | Zbl 0251.35052

[19] von Wahl W., Neue Resolventenabschätzungen für elliptische Differentialoperatoren und semilineare parabolische Gleichungen, Abh. Math. Sem. Univ. Hamburg, 1977, 46, 179–204 (inGerman) http://dx.doi.org/10.1007/BF02993019[Crossref] | Zbl 0408.35031

[20] Wild C., Semi-groupes de croissance α < 1 holomorphes, C. R. Acad. Sci. Paris Sér. A-B, 1977, 285, A437–A440 (in French) | Zbl 0359.47024

[21] Yagi A., Generation theorem of semigroup for multivalued linear operators, Osaka J. Math., 1991, 28, 385–410 | Zbl 0812.47045