Wahl’s conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians
Venkatramani Lakshmibai ; Komaranapuram Raghavan ; Parameswaran Sankaran
Open Mathematics, Tome 7 (2009), p. 214-223 / Harvested from The Polish Digital Mathematics Library

It is shown that the proof by Mehta and Parameswaran of Wahl’s conjecture for Grassmannians in positive odd characteristics also works for symplectic and orthogonal Grassmannians.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269207
@article{bwmeta1.element.doi-10_2478_s11533-009-0016-5,
     author = {Venkatramani Lakshmibai and Komaranapuram Raghavan and Parameswaran Sankaran},
     title = {Wahl's conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {214-223},
     zbl = {1200.14100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0016-5}
}
Venkatramani Lakshmibai; Komaranapuram Raghavan; Parameswaran Sankaran. Wahl’s conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians. Open Mathematics, Tome 7 (2009) pp. 214-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0016-5/

[1] Bourbaki N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 | Zbl 0186.33001

[2] Brion M., Kumar S., Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, 231, Birkhäuser Boston, Inc., Boston, MA, 2005 | Zbl 1072.14066

[3] Kumar S., Proof of Wahl’s conjecture on surjectivity of the Gaussian map for flag varieties, Amer. J. Math., 1992, 114, 1201–1220 http://dx.doi.org/10.2307/2374759[Crossref] | Zbl 0790.14015

[4] Lakshmibai V., Mehta V.B., Parameswaran A.J., Frobenius splittings and blow-ups, J. Algebra, 1998, 208, 101–128 http://dx.doi.org/10.1006/jabr.1998.7521[Crossref] | Zbl 0955.14006

[5] Mathieu O., Filtrations of G-modules, Ann. Sci. École Norm. Sup. (4), 1990, 23, 625–644 | Zbl 0748.20026

[6] Mathieu O., Tilting modules and their applications, In: Analysis on homogeneous spaces and representation theory of Lie groups, Okayama-Kyoto (1997), Adv. Stud. Pure Math., 26, Math. Soc. Japan, Tokyo, 2000, 145–212

[7] Mehta V.B., Parameswaran A.J., On Wahl’s conjecture for the Grassmannians in positive characteristic, Internat. J. Math., 1997, 8, 495–498 http://dx.doi.org/10.1142/S0129167X9700024X[Crossref] | Zbl 0914.14021

[8] Mehta V.B., Ramanathan A., Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2), 1985, 122, 27–40 http://dx.doi.org/10.2307/1971368[Crossref] | Zbl 0601.14043

[9] Mehta V.B., Ramanathan A., Schubert varieties in G/B × G/B, Compositio Math., 1988, 67, 355–358

[10] van der Kallen W., Lectures on Frobenius splittings and B-modules. Notes by S.P. Inamdar, Published for the Tata Institute of Fundamental Research, Bombay, by Springer-Verlag, Berlin, 1993

[11] Wahl J., Gaussian maps and tensor products of irreducible representations, Manuscripta Math., 1991, 73, 229–259 http://dx.doi.org/10.1007/BF02567640[Crossref] | Zbl 0764.20022