It is known that the existence of the group inverse a # of a ring element a is equivalent to the invertibility of a 2 a − + 1 − aa −, independently of the choice of the von Neumann inverse a − of a. In this paper, we relate the Drazin index of a to the Drazin index of a 2 a − + 1 − aa −. We give an alternative characterization when considering matrices over an algebraically closed field. We close with some questions and remarks.
@article{bwmeta1.element.doi-10_2478_s11533-009-0015-6, author = {Pedro Patr\'\i cio and Ant\'onio Costa}, title = {On the Drazin index of regular elements}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {200-205}, zbl = {1188.15005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0015-6} }
Pedro Patrício; António Costa. On the Drazin index of regular elements. Open Mathematics, Tome 7 (2009) pp. 200-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0015-6/
[1] Castro González N., Additive perturbation results for the Drazin inverse, Linear Algebra Appl., 2005, 397, 279–297 http://dx.doi.org/10.1016/j.laa.2004.11.001[Crossref][WoS] | Zbl 1071.15003
[2] Cline R.E., An application of representation of a matrix, MRC Technical Report, 592, 1965
[3] Drazin M.P., Pseudo inverses in associative rings and semigroups, Amer. Math. Monthly, 1958, 65, 506–514 http://dx.doi.org/10.2307/2308576[Crossref] | Zbl 0083.02901
[4] Hartwig R.E., Luh J., On finite regular rings, Pacific J. Math., 1977, 69, 73–95 | Zbl 0326.16012
[5] Hartwig R.E., Patricio P., A note on power bounded matrices, preprint
[6] Hartwig R.E., Shoaf J., Group inverses and Drazin inverse of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. Ser. A, 1977, 24, 10–34 http://dx.doi.org/10.1017/S1446788700020036[Crossref] | Zbl 0372.15003
[7] Hartwig R.E., Wang G., Wei Y., Some additive results on Drazin inverses, Linear Algebra Appl., 2001, 322, 207–217 http://dx.doi.org/10.1016/S0024-3795(00)00257-3[Crossref] | Zbl 0967.15003
[8] Patricio P., Puystjens R., Generalized invertibility in two semigroups of a ring, Linear Algebra Appl., 2004, 377, 125–139 http://dx.doi.org/10.1016/j.laa.2003.08.004[Crossref]
[9] Puystjens R., Hartwig R.E., The group inverse of a companion matrix, Linear and Multilinear Algebra, 1997, 43, 137–150 http://dx.doi.org/10.1080/03081089708818521[Crossref] | Zbl 0890.15003
[10] Roman S., Advanced linear algebra, Graduate Texts in Mathematics 135, Springer, New York, 2005 | Zbl 1085.15001
[11] Schmoeger C., On Fredholm properties of operator products, Math. Proc. R. Ir. Acad. 103A, 2003, 2, 203–208 http://dx.doi.org/10.3318/PRIA.2003.103.2.203[Crossref] | Zbl 1084.47009