A characterization of oscillation and nonoscillation of the Emden-Fowler difference equation is given, jointly with some asymptotic properties. The problem of the coexistence of all possible types of nonoscillatory solutions is also considered and a comparison with recent analogous results, stated in the half-linear case, is made.
@article{bwmeta1.element.doi-10_2478_s11533-009-0014-7, author = {Mariella Cecchi and Zuzana Do\v sl\'a and Mauro Marini}, title = {On oscillation and nonoscillation properties of Emden-Fowler difference equations}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {322-334}, zbl = {1180.39012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0014-7} }
Mariella Cecchi; Zuzana Došlá; Mauro Marini. On oscillation and nonoscillation properties of Emden-Fowler difference equations. Open Mathematics, Tome 7 (2009) pp. 322-334. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0014-7/
[1] Agarwal R.P., Bohner M., Grace S.R., O’Regan D., Discrete oscillation theory, Hindawi Publishing Corporation, New York, 2005 http://dx.doi.org/10.1155/9789775945198[Crossref] | Zbl 1084.39001
[2] Cecchi M., Došlá Z., Marini M., Nonoscillatory half-linear difference equations and recessive solutions, Adv. Difference Equ., 2005, 2, 193–204 http://dx.doi.org/10.1155/ADE.2005.193[Crossref] | Zbl 1111.39005
[3] Cecchi M., Došlá Z., Marini M., Vrkoč I., Summation inequalities and half-linear difference equations, J. Math. Anal. Appl., 2005, 302, 1–13 http://dx.doi.org/10.1016/j.jmaa.2004.08.005[Crossref] | Zbl 1069.39001
[4] Cecchi M., Došlá Z., Marini M., Vrkoč I., Asymptotic properties for half-linear difference equations, Math. Bohem., 2006, 131, 347–363 | Zbl 1110.39004
[5] Cecchi M., Došlá Z., Marini M., On the growth of nonoscillatory solutions for difference equations with deviating argument, Adv. Difference Equ., 2008, Article ID 505324, 15 pp. | Zbl 1146.39007
[6] Cecchi M., Došlá Z., Marini M., Intermediate solutions for nonlinear difference equations with p-Laplacian, Advanced Studies in Pure Mathematics, 2009, 53, 45–52 | Zbl 1179.39004
[7] Huo H.F., Li W.T., Oscillation of certain two-dimensional nonlinear difference systems, Comput. Math. Appl., 2003, 45, 1221–1226 http://dx.doi.org/10.1016/S0898-1221(03)00089-0[Crossref] | Zbl 1056.39009
[8] Jiang J., Li X., Oscillation and nonoscillation of two-dimensional difference systems, J. Comput. Appl. Math., 2006, 188, 77–88 http://dx.doi.org/10.1016/j.cam.2005.03.054[Crossref]
[9] Li W.T., Oscillation theorems for second-order nonlinear difference equations, Math. Comput. Modelling, 2000, 31, 71–79 http://dx.doi.org/10.1016/S0895-7177(00)00047-9[Crossref] | Zbl 1042.39516
[10] Li W.T., Classification schemes for nonoscillatory solutions of two-dimensional nonlinear difference systems, Comput. Math. Appl., 2001, 42, 341–355 http://dx.doi.org/10.1016/S0898-1221(01)00159-6[Crossref] | Zbl 1006.39013
[11] Wong P.J.Y., Agarwal R.P, Oscillation and monotone solutions of second order quasilinear difference equations, Funkcial. Ekvac., 1996, 39, 491–517 | Zbl 0871.39005
[12] Zhang G., Cheng S.S., Gao Y., Classification schemes for positive solutions of a second-order nonlinear difference equation, J. Comput. Appl. Math., 1999, 101, 39–51 http://dx.doi.org/10.1016/S0377-0427(98)00189-7[Crossref] | Zbl 0953.39004