Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.
@article{bwmeta1.element.doi-10_2478_s11533-009-0013-8, author = {Fedor Bogomolov and Yuri Zarhin}, title = {Ordinary reduction of K3 surfaces}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {206-213}, zbl = {1178.14039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0013-8} }
Fedor Bogomolov; Yuri Zarhin. Ordinary reduction of K3 surfaces. Open Mathematics, Tome 7 (2009) pp. 206-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0013-8/
[1] Artin M., Supersingular K3 surfaces, Ann. Sci. École Norm. Sup., Sér. 4, 1974, 7, 543–567 | Zbl 0322.14014
[2] Artin M., Mazur B., Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup., Sér. 4, 1977, 10, 87–131 | Zbl 0351.14023
[3] Berthelot P., Ogus A., Notes on crystalline cohomology, Princeton University Press, Princeton, 1978 | Zbl 0383.14010
[4] Bogomolov F.A., Sur l’algébricité des représentations ℓ-adiques, C. R. Acad. Sci. Paris Sér. A-B, 1980, 290, A701–A703 (in French) | Zbl 0457.14020
[5] Bogomolov F.A., Points of finite order on abelian varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 44, 782–804 (in Russian), Math. USSR Izv., 1981, 17, 55–72 | Zbl 0453.14018
[6] Deligne P., La conjecture de Weil pour les surfaces K3, Invent. Math., 1972, 15, 206–226 (in French) http://dx.doi.org/10.1007/BF01404126[Crossref] | Zbl 0219.14022
[7] Deligne P. (rédigé par L. Illusie), Relèvement des surfaces K3 en charactéristique nulle, In: Surfaces Algébriques, Lecture Notes in Math., Springer, 1981, 868, 58–79 (in French)
[8] Faltings G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 1983, 73, 349–366, Erratum, 1984, 75, 381 (in German) http://dx.doi.org/10.1007/BF01388432[Crossref]
[9] Hindry M., Silverman J.H., Diophantine geometry, An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag, New York, 2000 | Zbl 0948.11023
[10] Joshi K., Rajan C.S., Frobenius splitting and ordinarity, Int. Math. Res. Not., 2003, 2, 109–121 http://dx.doi.org/10.1155/S1073792803112135[Crossref] | Zbl 1074.14019
[11] Katz N., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., 1970, 39, 175–232 http://dx.doi.org/10.1007/BF02684688[Crossref] | Zbl 0221.14007
[12] Katz N., Messing W., Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 1974, 23, 73–77 http://dx.doi.org/10.1007/BF01405203[Crossref] | Zbl 0275.14011
[13] Koch H., Number theory II (Algebraic number theory), Encyclopedia of Mathematical Sciences 62, Springer Verlag, Berlin Heidelberg, 1992
[14] Mazur B., Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 1972, 78, 653–667 http://dx.doi.org/10.1090/S0002-9904-1972-12976-8[Crossref] | Zbl 0258.14006
[15] Mumford D., Abelian varieties, Second Edition, Oxford University Press, London, 1974
[16] Noot R., Abelian varieties-Galois representation and properties of ordinary reduction, Compositio Math., 1995, 97, 161–171 | Zbl 0868.14021
[17] Noot R., Abelian varieties with ℓ-adic Galois representation of Mumford’s type, J. Reine Angew. Math., 2000, 519, 155–169 | Zbl 1042.14014
[18] Nygaard N., The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math., 1983, 74, 213–237 http://dx.doi.org/10.1007/BF01394314[WoS][Crossref] | Zbl 0557.14002
[19] Nygaard N., Ogus A., Tate’s conjecture for K3 surfaces of finite height, Ann. of Math., 1985, 122, 461–507 http://dx.doi.org/10.2307/1971327[Crossref] | Zbl 0591.14005
[20] Ogus A., Hodge cycles and crystalline cohomology, In: Lecture Notes in Math., Springer, 1982, 900, 357–414 http://dx.doi.org/10.1007/978-3-540-38955-2_8[Crossref]
[21] Piatetski-Shapiro I. I., Shafarevich I.R., Arithmetic of K3 surfaces, Trudy Mat. Inst. Steklov, 1973, 132, 44–54 (in Russian), Proc. Steklov. Math. Inst., 1975, 132, 45–57 | Zbl 0293.14010
[22] Serre J.-P., Représentations ℓ-adiques, In: Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193, Japan Soc. Promotion Sci., Tokyo, 1977 (in French)
[23] Serre J.-P., Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 1981, 54, 323–401 (in French) http://dx.doi.org/10.1007/BF02698692[Crossref]
[24] Serre J.-P., Abelian ℓ-adic representations and elliptic curves, Second Edition, Addison-Wesley, 1989
[25] Skorobogatov A.N., Zarhin Yu.G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geom., 2008, 17, 481–502 [Crossref] | Zbl 1157.14008
[26] Tankeev S.G., On the weights of the ℓ-adic representation and arithmetic of Frobenius eigenvalues, Izv. Ross. Akad. Nauk Ser. Mat., 1999, 63, 185–224 (in Russian), Izv. Math., 1999, 63, 181–218
[27] Tate J., Conjectures on algebraic cycles in ℓ-adic cohomology, Motives (Seattle, WA, 1991), 71–83, Proc. Sympos. Pure Math. 55,Part 1, Amer. Math. Soc., Providence, RI, 1994
[28] Yu J.-D., Yui N., K3 Surfaces of finite height over finite fields, J. Math. Kyoto Univ., 2008, 48, 499–519 | Zbl 1174.14034
[29] Zarhin Yu.G., Hodge groups of K3 surfaces, J. Reine Angew. Math., 1983, 341, 193–220
[30] Zarhin Yu.G., Weights of simple Lie algebras in the cohomology of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48, 264–304 (in Russian), Math. USSR Izv., 1985, 24, 245–282
[31] Zarhin Yu.G., Transcendental cycles on ordinary K3 surfaces over finite fields, Duke Math. J., 1993, 72, 65–83 http://dx.doi.org/10.1215/S0012-7094-93-07203-1[Crossref] | Zbl 0819.14005