Groups with small deviation for non-subnormal subgroups
Leonid Kurdachenko ; Howard Smith
Open Mathematics, Tome 7 (2009), p. 186-199 / Harvested from The Polish Digital Mathematics Library

We introduce the notion of the non-subnormal deviation of a group G. If the deviation is 0 then G satisfies the minimal condition for nonsubnormal subgroups, while if the deviation is at most 1 then G satisfies the so-called weak minimal condition for such subgroups (though the converse does not hold). Here we present some results on groups G that are either soluble or locally nilpotent and that have deviation at most 1. For example, a torsion-free locally nilpotent with deviation at most 1 is nilpotent, while a Baer group with deviation at most 1 has all of its subgroups subnormal.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269190
@article{bwmeta1.element.doi-10_2478_s11533-009-0012-9,
     author = {Leonid Kurdachenko and Howard Smith},
     title = {Groups with small deviation for non-subnormal subgroups},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {186-199},
     zbl = {1195.20032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0012-9}
}
Leonid Kurdachenko; Howard Smith. Groups with small deviation for non-subnormal subgroups. Open Mathematics, Tome 7 (2009) pp. 186-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0012-9/

[1] Brookes C.J.B., Groups with every subgroup subnormal, Bull. London Math. Soc., 1983, 15, 235–238 http://dx.doi.org/10.1112/blms/15.3.235[Crossref]

[2] Evans M.J., Kim Y., On groups in which every subgroup of infinite rank is subnormal of bounded defect, Comm. Algebra, 2004, 32, 2547–2557 http://dx.doi.org/10.1081/AGB-120037398[Crossref] | Zbl 1070.20042

[3] Franciosi S., de Giovanni F., Groups satisfying the minimal condition on non-subnormal subgroups, In: Infinite Groups 1994, de Gruyter, Berlin, 1995, 63–72 | Zbl 0866.20016

[4] Hall P., The Edmonton notes on nilpotent groups, Mathematics Department, Queen Mary College, London, 1969

[5] Hartley B., McDougall D., Injective modules and soluble groups satisfying the minimal condition for normal subgroups, Bull. Austral. Math. Soc., 1971, 4, 113–135 http://dx.doi.org/10.1017/S0004972700046335[Crossref] | Zbl 0206.03101

[6] Heineken H., Mohamed I.J., A group with trivial centre satisfying the normalizer condition, J. Algebra, 1968, 10, 368–376 http://dx.doi.org/10.1016/0021-8693(68)90086-0[Crossref] | Zbl 0167.29001

[7] Kegel O.H., Wehfritz BAR, Locally finite groups, North-Holland, 1973

[8] Kurdachenko L.A., Otal J., Subbotin I.Ya., Groups with prescribed quotient groups and associated module theory, World Scientific Publishing Co., Inc., River Edge, NJ, 2002 | Zbl 1019.20001

[9] Kurdachenko L.A., Smith H., Groups with the weak minimal condition for non-subnormal subgroups, Ann. Mat. Pura Appl., 1997, 173, 299–312 http://dx.doi.org/10.1007/BF01783473[Crossref] | Zbl 0939.20040

[10] Kurdachenko L.A., Smith H., Groups in which all subgroups of infinite rank are subnormal, Glasg. Math. J., 2004, 46, 83–89 http://dx.doi.org/10.1017/S0017089503001551[Crossref] | Zbl 1059.20023

[11] Kurdachenko L.A., Smith H., Groups with all subgroups either subnormal or self-normalizing, J. Pure Appl. Algebra, 2005, 196, 271–278 http://dx.doi.org/10.1016/j.jpaa.2004.08.005[Crossref] | Zbl 1078.20026

[12] Lennox J.C., Stonehewer S.E., Subnormal subgroups of groups, The Clarendon Press, Oxford University Press, New York, 1987 | Zbl 0606.20001

[13] Matlis E., Cotorsion modules, Mem. Amer. Math. Soc., 1964, 49

[14] McConnell J.C., Robson J.C., Noncommutative Noetherian rings, John Wiley & Sons, Ltd., Chichester, 1987 | Zbl 0644.16008

[15] Möhres W., Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Archiv der Math., 1990, 54, 232–235 http://dx.doi.org/10.1007/BF01188516[Crossref] | Zbl 0663.20027

[16] Robinson D.J.S., Finiteness conditions and generalized soluble groups, Springer-Verlag, New York-Berlin, 1972 | Zbl 0243.20032

[17] Robinson D.J.S., A new treatment of soluble groups with finiteness conditions on their abelian subgroups, Bull. London Math. Soc., 1976, 8, 113–129 http://dx.doi.org/10.1112/blms/8.2.113[Crossref] | Zbl 0328.20027

[18] Roseblade J.E., On groups in which every subgroup is subnormal, J. Algebra, 1965, 2, 402–412 http://dx.doi.org/10.1016/0021-8693(65)90002-5[Crossref] | Zbl 0135.04901

[19] Smith H., Groups with few non-nilpotent subgroups, Glasgow Math. J., 1997, 39, 141–151 http://dx.doi.org/10.1017/S0017089500032031[Crossref] | Zbl 0883.20018

[20] Smith H., Torsion-free groups with all subgroups subnormal, Arch. Math., 2001, 76, 1–6 http://dx.doi.org/10.1007/s000130050533[Crossref] | Zbl 0982.20018

[21] Zaitsev D.I., Locally solvable groups of finite rank, Dokl. Akad. Nauk SSSR, 1978, 240, 257–260 | Zbl 0413.20034