In this paper, the concept of lacunary equi-statistical convergence is introduced and it is shown that lacunary equi-statistical convergence lies between lacunary statistical pointwise and lacunary statistical uniform convergence. Inclusion relations between equi-statistical and lacunary equi-statistical convergence are investigated and it is proved that, under some conditions, lacunary equi-statistical convergence and equi-statistical convergence are equivalent to each other. A Korovkin type approximation theorem via lacunary equi-statistical convergence is proved. Moreover it is shown that our Korovkin type approximation theorem is a non-trivial extension of some well-known Korovkin type approximation theorems. Finally the rates of lacunary equi-statistical convergence by the help of modulus of continuity of positive linear operators are studied.
@article{bwmeta1.element.doi-10_2478_s11533-009-0009-4, author = {H\"useyin Aktu\u glu and Halil Gezer}, title = {Lacunary equi-statistical convergence of positive linear operators}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {558-567}, zbl = {1181.41039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0009-4} }
Hüseyin Aktuğlu; Halil Gezer. Lacunary equi-statistical convergence of positive linear operators. Open Mathematics, Tome 7 (2009) pp. 558-567. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0009-4/
[1] Altomare F., Campiti M., Korovkin-type approximation theory and its applications, Walter de Gruyter & Co., Berlin, 1994 | Zbl 0924.41001
[2] Balcerzak M., Dems K., Komisarski A.,Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl., 2007 328, 715–729 http://dx.doi.org/10.1016/j.jmaa.2006.05.040 | Zbl 1119.40002
[3] Duman O., Khan M.K., Orhan C.,A-statistical convergence of approximating operators. Math. Inequal. Appl., 2003 6, 689–699 | Zbl 1086.41008
[4] Duman O., Orhan C.,Rates of A-statistical convergence of positive linear operators. Appl. Math. Lett., 2005 18, 1339–1344 http://dx.doi.org/10.1016/j.aml.2005.02.029 | Zbl 1085.41012
[5] Erkuş E., Duman O.,A-statistical extension of the Korovkin type approximation theorem. Proc. Indian Acad. Sci. Math. Sci., 2005. 115, 499–508 http://dx.doi.org/10.1007/BF02829812 | Zbl 1085.41017
[6] Erkuş E., Duman O.,A Korovkin type approximation theorem in statistical sense. Studia Sci. Math. Hungar., 2006 43, 285–294 | Zbl 1108.41012
[7] Fast H.,Sur la convergence statistique. Colloquium Math., 1951 2, 241–244 | Zbl 0044.33605
[8] Freedman A.R., Sember J.J.,Densities and summability. Pacific J. Math., 1981 95, 293–305 | Zbl 0504.40002
[9] Freedman A.R., Sember J.J., Raphael M.,Some Cesàro-type summability spaces. Proc. London Math. Soc. (3), 1978 37, 508–520 http://dx.doi.org/10.1112/plms/s3-37.3.508 | Zbl 0424.40008
[10] Fridy J.A.,On statistical convergence. Analysis, 1985 5, 301–313 | Zbl 0588.40001
[11] Fridy J.A., Orhan C.,Lacunary statistical convergence. Pacific J. Math., 1993 160, 43–51 | Zbl 0794.60012
[12] Gadjiev A.D., Orhan C.,Some approximation theorems via statistical convergence. Rocky Mountain J. Math., 2002 32, 129–138 http://dx.doi.org/10.1216/rmjm/1030539612 | Zbl 1039.41018
[13] Karakuş S., Demirci K., Duman O.,Equi-statistical convergence of positive linear operators. J. Math. Anal. Appl., 2008 339, 1065–1072 http://dx.doi.org/10.1016/j.jmaa.2007.07.050 | Zbl 1131.41008
[14] Kolk E.,Matrix summability of statistically convergent sequences. Analysis, 1993 13, 77–83 | Zbl 0801.40005
[15] Korovkin P.P., Linear operators and approximation theory, Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India) Delhi, 1960 | Zbl 0094.10201
[16] Patterson R.F., Savaş E.,Korovkin and Weierstrass approximation via lacunary statistical sequences. J. Math. Stat., 2005 1, 165–167 http://dx.doi.org/10.3844/jmssp.2005.165.167 | Zbl 1142.41304