In this paper we use the Euler-Seidel method for deriving new identities for hyperharmonic and r-Stirling numbers. The exponential generating function is determined for hyperharmonic numbers, which result is a generalization of Gosper’s identity. A classification of second order recurrence sequences is also given with the help of this method.
@article{bwmeta1.element.doi-10_2478_s11533-009-0008-5, author = {Istv\'an Mez\H o and Ayhan Dil}, title = {Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {310-321}, zbl = {1229.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0008-5} }
István Mező; Ayhan Dil. Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence. Open Mathematics, Tome 7 (2009) pp. 310-321. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0008-5/
[1] Benjamin A.T., Gaebler D.J., Gaebler R.P., A combinatorial approach to hyperharmonic numbers, Integers, 2003, 3, 1–9 | Zbl 1128.11309
[2] Broder A.Z., The r-Stirling numbers, Discrete Math., 1984, 49, 241–259 http://dx.doi.org/10.1016/0012-365X(84)90161-4[Crossref]
[3] Conway J.H., Guy R.K., The book of numbers, Copernicus, New York, 1996 | Zbl 0866.00001
[4] Dil A., Mean values of Dedekind sums, M.Sc. in Mathematics, University of Akdeniz, Antalya, December 2005 (in Turkish)
[5] Dil A., Kurt V, Cenkci M., Algorithms for Bernoulli and allied polynomials, J. Integer Seq., 2007, 10, Article 07.5.4.
[6] Dumont D., Matrices d’Euler-Seidel, Séminaire Lotharingien de Combinatoire, 1981 | Zbl 0925.05025
[7] Euler L., De transformatione serierum, Opera Omnia, series prima, Vol. X, Teubner, 1913
[8] Graham R.L., Knuth D.E., Patashnik O., Concrete mathematics, Addison-Wesley Publishing Company, Reading, MA, 1994 | Zbl 0836.00001
[9] Koshy T., Fibonacci and Lucas numbers with applications, Wiley-Interscience, New York, 2001 | Zbl 0984.11010
[10] Mező I., New properties of r-Stirling series, Acta Math. Hungar., 2008, 119, 341–358 http://dx.doi.org/10.1007/s10474-007-7047-9[WoS][Crossref] | Zbl 1174.11026
[11] Seidel L., Über eine einfache Enstehung weise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch. Akad. Math. Phys. Classe, 1877, 157–187