On some infinite dimensional linear groups
Leonid Kurdachenko ; Alexey Sadovnichenko ; Igor Subbotin
Open Mathematics, Tome 7 (2009), p. 176-185 / Harvested from The Polish Digital Mathematics Library

Let F be a field, A be a vector space over F, and GL(F,A) the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dimF(B/CoreG(B)) is finite. In the present article we begin the study of subgroups G of GL(F,A) such that every subspace of A is either nearly G-invariant or almost G-invariant. More precisely, we consider the case when G is a periodic p′-group where p = charF.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269113
@article{bwmeta1.element.doi-10_2478_s11533-009-0007-6,
     author = {Leonid Kurdachenko and Alexey Sadovnichenko and Igor Subbotin},
     title = {On some infinite dimensional linear groups},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {176-185},
     zbl = {1193.20062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0007-6}
}
Leonid Kurdachenko; Alexey Sadovnichenko; Igor Subbotin. On some infinite dimensional linear groups. Open Mathematics, Tome 7 (2009) pp. 176-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0007-6/

[1] Buckley J.T., Lennox J.C., Neumann B.H., Smith H., Wiegold J., Groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A, 1995, 59, 384–398 http://dx.doi.org/10.1017/S1446788700037289[Crossref] | Zbl 0853.20023

[2] Dixon M.R., Evans M.J., Kurdachenko L.A., Linear groups with the minimal condition on subgroups of infinite central dimension, J. Algebra, 2004, 277, 172–186 http://dx.doi.org/10.1016/j.jalgebra.2004.02.029[WoS][Crossref]

[3] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J., Locally nilpotent linear groups with the weak chain conditions on subgroups of infinite central dimension, Publ. Mat., 2008, 52, 151–169 | Zbl 1149.20030

[4] Kurdachenko L.A., Otal J,. Subbotin I.Ya., Groups with prescribed quotient groups and associated module theory, World Scientific, New Jersey, 2002 | Zbl 1019.20001

[5] Kurdachenko L.A, Otal J., Subbotin I.Ya., Artinian modules over group rings, Frontiers in Mathematics, Birkhäuser, Basel, 2007 | Zbl 1110.16001

[6] Kurdachenko L.A., Subbotin I.Ya., Linear groups with the maximal condition on subgroups of infinite central dimension, Publ. Mat., 2006, 50, 103–131

[7] Muñoz-Escolano J.M., Otal J., Semko N.N., Periodic linear groups with the weak chain conditions on subgroups of infinite central dimension, Comm. Algebra, 2008, 36, 749–763 http://dx.doi.org/10.1080/00927870701724318[WoS][Crossref] | Zbl 1141.20030

[8] Neumann B.H., Groups with finite classes of conjugate subgroups, Math. Z, 1955, 63, 76–96 http://dx.doi.org/10.1007/BF01187925[Crossref] | Zbl 0064.25201

[9] Phillips R.E., Finitary linear groups: a survey, In: Finite and locally finite groups (Istanbul 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, 111–146 | Zbl 0840.20048

[10] Wehrfritz B.A.F., Infinite linear groups, Springer, Berlin, 1973