On 0-homology of categorical at zero semigroups
Boris Novikov ; Lyudmyla Polyakova
Open Mathematics, Tome 7 (2009), p. 165-175 / Harvested from The Polish Digital Mathematics Library

The isomorphism of 0-homology groups of a categorical at zero semigroup and homology groups of its 0-reflector is proved. Some applications of 0-homology to Eilenberg-MacLane homology of semigroups are given.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269364
@article{bwmeta1.element.doi-10_2478_s11533-009-0001-z,
     author = {Boris Novikov and Lyudmyla Polyakova},
     title = {On 0-homology of categorical at zero semigroups},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {165-175},
     zbl = {1182.20059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0001-z}
}
Boris Novikov; Lyudmyla Polyakova. On 0-homology of categorical at zero semigroups. Open Mathematics, Tome 7 (2009) pp. 165-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0001-z/

[1] Adyan S.I., Defining relations and algorithmical problems for groups and semigroups, Tr. Mat. Inst. Steklova, 1966, 85 (in Russian) | Zbl 0204.01702

[2] Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, N.J., 1956

[3] Clifford A.H., Preston G.B., The algebraic theory of semigroups II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, 1967

[4] Dehornoy P., Lafont Yv., Homology of Gaussian groups, Ann. Inst. Fourier, 2003, 53(2), 489–540 | Zbl 1100.20036

[5] Husainov A.A., On the homology of small categories and asynchronous transition systems, Homology Homotopy Appl., 2004, 6(1), 439–471 | Zbl 1078.18005

[6] Husainov A.A., Tkachenko V.V., Asynchronous transition systems homology groups, In: Mathematical modeling and the near questions of mathematics. Collection of the scientifcs works, KhGPU, Khabarovsk, 2003, 23–33

[7] Kobayashi Yu., Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra, 1990, 65, 263–275 http://dx.doi.org/10.1016/0022-4049(90)90106-R[Crossref]

[8] MacLane S., Categories for the working mathematician, Springer-Verlag, New York-Heidelberg-Berlin, 1972 | Zbl 0705.18001

[9] Novikov B.V., 0-cohomology of semigroups, In: Theoretical and applied questions of differential equations and algebra, Naukova Dumka, Kiev, 1978, 185–188 (in Russian)

[10] Novikov B.V., Defining relations and 0-modules over semigroup, Theory of semigroups and its applications, Saratov. Gos. Univ., Saratov, 1983, 116, 94–99 (in Russian) | Zbl 0543.20052

[11] Novikov B.V., Semigroup cohomology and applications, Algebra - representation theory (Constanta, 2000), 219–234, NATO Sci. Ser. II Math. Phys. Chem., 28, Kluwer Acad. Publ., Dordrecht, 2001 | Zbl 0994.20049

[12] Polyakova L.Yu., On 0-homology of semigroups, preprint | Zbl 1164.20370

[13] Squier C., Word problem and a homological finiteness condition for monoids, J. Pure Appl. Algebra, 1987, 49, 201–217 http://dx.doi.org/10.1016/0022-4049(87)90129-0[Crossref]