We show that a Lagrangian submanifold of a complex space form attaining equality in the inequality obtained by Oprea in [8], must be totally geodesic.
@article{bwmeta1.element.doi-10_2478_s11533-008-0064-2, author = {Franki Dillen and Johan Fastenakels}, title = {On an inequality of Oprea for Lagrangian submanifolds}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {140-144}, zbl = {1176.53030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0064-2} }
Franki Dillen; Johan Fastenakels. On an inequality of Oprea for Lagrangian submanifolds. Open Mathematics, Tome 7 (2009) pp. 140-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0064-2/
[1] Bolton J., Dillen F., Fastenakels J., Vrancken L., A best possible inequality for curvature-like tensor fields, preprint | Zbl 1175.53023
[2] Bolton J., Rodriguez Montealegre C., Vrancken L., Characterizing warped product Lagrangian immersions in complex projective space, Proc. Edinb. Math. Soc., 2008, 51, 1–14 [WoS]
[3] Bolton J., Vrancken L., Lagrangian submanifolds attaining equality in the improved Chen’s inequality, Bull. Belg. Math. Soc., 2007, 14, 311–315 | Zbl 1130.53016
[4] Chen B.Y., Some pinching and classification theorems for minimal submanifolds, Arch. Math., 1993, 60, 568–578 http://dx.doi.org/10.1007/BF01236084[Crossref] | Zbl 0811.53060
[5] Chen B.Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension, Glasgow Math. J., 1999, 41, 33–41 http://dx.doi.org/10.1017/S0017089599970271[Crossref] | Zbl 0962.53015
[6] Chen B.Y., Riemannian geometry of Lagrangian submanifolds, Taiwan. J. Math., 2001, 5, 681–723 | Zbl 1002.53053
[7] Oprea T., Chen’s inequality in Lagrangian case, Colloq. Math., 2007, 108, 163–169 http://dx.doi.org/10.4064/cm108-1-15[Crossref] | Zbl 1118.53035
[8] Oprea T., On a Riemannian invariant of Chen type, Rocky Mountain J. Math., 2008, 38, 567–581 http://dx.doi.org/10.1216/RMJ-2008-38-2-567[Crossref] | Zbl 1195.53072